PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 117 > pp. 103-119

ON THE INFLUENCE OF COUPLING AMC RESONANCES FOR RCS REDUCTION IN THE SHF BAND

By M. E. de Cos, Y. Alvarez-Lopez, and F. Las Heras Andres

Full Article PDF (784 KB)

Abstract:
A novel approach to Radar Cross-Section reduction using a thin Artificial Magnetic Conductor (AMC) structure is presented. The novel AMC structure combines two unit-cell metallization sizes and so it presents two resonant frequencies. RCS reduction is based on destructive interference of two partial reflections. Taking as starting point a previous work showing significant RCS reduction based on the combination of two AMC surfaces with overlapped AMC operation bandwidths (so that they have similar reflection coefficient amplitude) without a 180º-phaseshift, the key point of this contribution is to analyze the influence of the degree of the aforementioned overlapping on RCS reduction and to show that this achievement is based on coupling phenomena. A comparison of the achieved RCS reduction when combining two AMCs whose AMC operation bandwidth overlaps, two AMCs with non-overlapped AMC operation bandwidths, and PEC-AMC is presented. Prototypes of these three combinations have been manufactured (having them the same size) and their RCS has been measured in an anechoic chamber.

Citation:
M. E. de Cos, Y. Alvarez-Lopez, and F. Las Heras Andres, "On the Influence of Coupling AMC Resonances for RCS Reduction in the SHF Band," Progress In Electromagnetics Research, Vol. 117, 103-119, 2011.
doi:10.2528/PIER11040103
http://www.jpier.org/PIER/pier.php?paper=11040103

References:
1. Lee, K.-C., C.-W. Huang, and M.-C. Fang, "Radar target recognition by projected features of frequency-diversity RCS," Progress In Electromagnetics Research, Vol. 81, 121-133, 2008.
doi:10.2528/PIER08010206

2. Li, N.-J., C.-F. Hu, L.-X. Zhang, and J.-D. Xu, "Overview of RCS extrapolation techniques to aircraft targets," Progress In Electromagnetics Research B, Vol. 9, 249-262, 2008.
doi:10.2528/PIERB08080706

3. Wang, W.-T., S.-X. Gong, Y.-J. Zhang, F.-T. Zha, J. Ling, and T. Wan, "Low RCS dipole array synthesis based on MoM-PSO hybrid algorithm ," Progress In Electromagnetics Research, Vol. 94, 119-132, 2009.
doi:10.2528/PIER09060902

4. Li, X.-F., Y.-J. Xie, and R. Yang, "Bistatic RCS prediction for complex targets using modified current marching technique," Progress In Electromagnetics Research, Vol. 93, 13-28, 2009.
doi:10.2528/PIER09030804

5. Bourlier, C., H. He, J. Chauveau, R. Hémon, and P. Pouliguen, "RCS of large bent waveguide ducts from a modal analysis combined with the kirchhoff approximation," Progress In Electromagnetics Research, Vol. 88, 1-38, 2008.
doi:10.2528/PIER08101708

6. Kim, B.-C., K.-K. Park, and H.-T. Kim, "Efficient RCS prediction method using angular division algorithm," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 65-74, 2009.
doi:10.1163/156939309787604625

7. Wang, W.-T., S.-X. Gong, X. Wang, H.-W. Yuan, J. Ling, and T.-T. Wan, "RCS reduction of array antenna by using bandstop FSS reflector," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1505-1514, 2009.
doi:10.1163/156939309789476473

8. Park, K.-K. and H.-T. Kim, "RCS prediction acceleration and reduction of table size for the angular division algorithm," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1657-1664, 2009.

9. Pouliguen, P., R. Hémon, C. Bourlier, J.-F. Damiens, and J. Saillard, "Analytical formulae for radar cross section of flat plates in near field and normal incidence," Progress In Electromagnetics Research B, Vol. 9, 263-279, 2008.
doi:10.2528/PIERB08081902

10. Chen, H. T., G.-Q. Zhu, and S.-Y. He, "Using genetic algorithm to reduce the radar cross section of three-dimensional anisotropic impedance object," Progress In Electromagnetics Research B, Vol. 9, 231-248, 2008.
doi:10.2528/PIERB08080202

11. Chen, H.-Y., P. Zhou, L. Chen, and L. Deng, "Study on the properties of surface waves in coated RAM layers and monostatic Rcsr performances of the coated slab," Progress In Electromagnetics Research M, Vol. 11, 123-135, 2010.
doi:10.2528/PIERM09122101

12. Abdelaziz, A. A., "Improving the performance of an antenna array by using radar absorbing cover," Progress In Electromagnetics Research Letters, Vol. 1, 129-138, 2008.
doi:10.2528/PIERL07112503

13. Bondeson, A., Y. Yang, and P. Weinerfelt, "Shape optimization for radar cross sections by a gradient method," International Journal for Numerical Methods in Engineering, Vol. 61, No. 5, 687-715, 2004.
doi:10.1002/nme.1088

14. Lee, C., S. Lee, and R. Chou, "RCS reduction of a cylindrical cavity by dielectric coating," 1986 Antennas and Propagation Society International Symposium, Vol. 24, 305-308, 1986.
doi:10.1109/APS.1986.1149727

15. Mosallaei, H. and Y. Rahmat-Samii, "RCS reduction in planar, cylindrical, and spherical structures by composite coatings using genetic algorithms," 1999 Antennas and Propagation Society International Symposium, Vol. 1, 438-441, 1999.

16. Zainud-Deen, S. H., A. Z. Botros, and M. S. Ibrahim, "Scattering from bodies coated with metamaterial using FDFD method," Progress In Electromagnetics Research B, Vol. 2, 279-290, 2008.
doi:10.2528/PIERB07112803

17. Hady, L. K. and A. A. Kishk, "Electromagnetic scattering from conducting circular cylinder coated by meta-materials and loaded with helical strips under oblique incidence," Progress In Electromagnetics Research B, Vol. 3, 189-206, 2008.
doi:10.2528/PIERB07121107

18. Martini, E., S. Maci, and A. D. Yaghian, Phase and group velocities in three-dimensional ideal cloaks, 3rd European Conference on Antennas and Propagation, 3244-3248, 2009.

19. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, 2006.
doi:10.1126/science.1133628

20. Salisbury, W. W., Absorbent Body for Electromagnetic Waves, US Patent 2 599 944, 1952.

21. Fante, R. L. and M. T. McCormack, "Reflection properties of the Salisbury screen," IEEE Transactions on Antennas and Propagation, Vol. 36, No. 10, 1443-1454, 1988.
doi:10.1109/8.8632

22. Engheta, N., "Thin absorbing screens using metamaterial surfaces," Proc. IEEE Antennas and Propagation Society International Symposium, 392-395, 2002.

23. Engheta, N., "Thin absorbing screens using metamaterial surfaces," Proc. IEEE Antennas and Propagation Society International Symposium , 392-395, 2002.

24. Oraizi, H. and A. Abdolali, "Combination of MLS, GA and CG for the reduction of RCS of multilayered cylindrical structures composed of dispersive metamaterials," Progress In Electromagnetics Research B, Vol. 3, 227-253, 2008.
doi:10.2528/PIERB07120803

25. Manapati, M. B. and R. S. Kshetrimayum, "SAR reduction in human head from mobile phone radiation using single negative metamaterials," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 10, 1385-1395, 2009.
doi:10.1163/156939309789108606

26. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIER10071409

27. Bucinskas, J., L. Nickelson, and V. Shugurovas, "Microwave scattering and absorption by a multilayered lossy metamaterial-glass cylinder," Progress In Electromagnetics Research, Vol. 105, 103-118, 2010.
doi:10.2528/PIER10041711

28. Costa, F., A. Monorchio, and G. Manara, "Analysis and design of ultra thin electromagnetic absorbers comprising resistively loaded high impedance surfaces," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 5, 1551-1558, 2010.
doi:10.1109/TAP.2010.2044329

29. Zhang, Y., R. Mittra, and B. Z. Wang, "Novel design for low-RCS screens using a combination of dual-AMC," Antennas and Propagation Society Intl. Symposium, 1-4, 2009.
doi:10.1155/2009/830931

30. Paquay, M., J. C. Iriarte, I. Ederra, R. Gonzalo, and P. de Maagt, "Thin AMC structure for radar cross section reduction," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 12, 3630-3638, 2007.
doi:10.1109/TAP.2007.910306

31. Iriarte, J. C., M. Paquay, I. Ederra, R. Gonzalo, and P. de Maagt, "RCS reduction in a chessboard-like structure using AMC cells," 2nd European Conference on Antennas and Propagation, 1-4, 2007.

32. Iriarte, J. C., I. Ederra, R. Gonzalo, and P. de Maagt, "Dual band RCS reduction using planar technology by combining AMC structures," 3rd European Conference on Antennas and Propagation, 3708-3709, 2009.

33. Zhang, Y., R. Mittra, B. Z. Wang, and N. T. Huang, "AMCs for ultra-thin and broadband RAM design," Electronics Letters, Vol. 45, No. 10, 484-485, 2009.
doi:10.1049/el.2009.3161

34. Caloz, C., A. Sanada, and T. Itoh, "A novel composite right-/left-handed coupled-line directional coupler with arbitrary coupling level and broad bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 3, 980-992, 2004.
doi:10.1109/TMTT.2004.823579

35. De Cos, M. E., Y. Álvarez, and F. Las-Heras, "Planar artificial magnetic conductor: Design and characterization setup in the RFID SHF band," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1467-1478, 2009.
doi:10.1163/156939309789476248

36. Li, Y., et al., Prototyping dual-band artificial magnetic conductors with laser micromachining, Proc. of WARS2006 Conference, Leura, NSW, Australia, 2006.

37. Alvarez, Y., M. E. De Cos, and F. Las-Heras, "RCS measurement setup for periodic structure prototype characterization," IEEE Antennas and Propagation Magazine, Vol. 52, No. 3, 100-106, 2010.
doi:10.1109/MAP.2010.5586586

38. De Cos, M. E., Y. Álvarez Lopez, F. Las-Heras, and , "A novel approach for RCS reduction using a combination of artificial magnetic conductors," Progress In Electromagnetics Research, Vol. 107, 147-159, 2010.
doi:10.2528/PIER10060402


© Copyright 2014 EMW Publishing. All Rights Reserved