PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 117 > pp. 449-477

RUBBER TIRE DUST-RICE HUSK PYRAMIDAL MICROWAVE ABSORBER

By M. F. B. A. Malek, E. M. Cheng, O. Nadiah, H. Nornikman, M. Ahmed, M. Z. A. Abdul Aziz, A. R. Othman, P. J. Soh, A. Abdullah Al-Hadi, A. Hasnain, and M. N. Taib

Full Article PDF (1,153 KB)

Abstract:
Rubber tire dust-rice husk is an innovation in improving the design of pyramidal microwave absorbers to be used in radio frequency (RF) anechoic chambers. An RF anechoic chamber is a shielded room covered with absorbers to eliminate unwanted reflection signals. To design the pyramidal microwave absorber, rice husk will be added to rubber tire dust since the study shows that both have high percentages of carbon. This innovative material combination will be investigated to determine the best reflectivity or reflection loss performance of pyramidal microwave absorbers. Carbon is the most important element that must be in the absorber in order to help the absorption of unwanted microwave signals. In the commercial market, polyurethane and polystyrene are the most popular foam-based material that has been used in pyramidal microwave absorber fabrication. Instead of using chemical material, this study shows that agricultural waste is more environmentally friendly and has much lower cost. In this paper, three combinations of rubber tire dust and rice husk are fabricated to investigate the performance of microwave absorber reflection loss in operating in the frequency range from 7 GHz to 12 GHz.

Citation:
M. F. B. A. Malek, E. M. Cheng, O. Nadiah, H. Nornikman, M. Ahmed, M. Z. A. Abdul Aziz, A. R. Othman, P. J. Soh, A. Abdullah Al-Hadi, A. Hasnain, and M. N. Taib, "Rubber Tire Dust-Rice Husk Pyramidal Microwave Absorber," Progress In Electromagnetics Research, Vol. 117, 449-477, 2011.
doi:10.2528/PIER11040801
http://www.jpier.org/PIER/pier.php?paper=11040801

References:
1., "Municipal solid waste in the United States: 2007 facts and figures," United States Environmental Protection Agency, EPA530-R-08-010, 2008.

2. Mavroulidou, M. and J. Figueiredo, "Discarded tire rubber as concrete aggregate: A possible outlet for used tyres," Global NEST Journal, 2010.
doi:10.1016/S0921-3449(97)00041-4

3. Jang, J.-W., T.-S. Yoo, J.-H. Oh, and I. Iwasaki, "Discarded tire recycling practices in the United States, Japan and Korea," Resources, Conservation and Recycling, Vol. 22, 1-14, 1998.

4. Joseph, P. S., "An assessment of environmental toxicity and potential contamination from artificial turf using shredded or crumb rubber," Turfgrass Producers International, 2006.

5. El-Gammal, A., A. K. Abdel-Gawad, Y. El-Sherbini, and A. Shalaby, "Compressive strength of concrete utilizing waste tire rubber," Journal of Emerging Trends in Engineering and Applied Sciences, Vol. 1, No. 1, 96-99, 2010.
doi:10.1016/j.wasman.2010.02.005

6. Aiello, M. A. and F. Leuzzi, "Waste tyre rubberized concrete: Properties at fresh and hardened state," Journal of Waste Management, Vol. 30, 1696-1704, 2010.
doi:10.1016/j.wasman.2004.01.006

7. Siddique, R. and T. R. Naik, "Properties of concrete containing scrap-tire rubber: An overview," Journal of Waste Management, Vol. 24, 563-569, 2004.
doi:10.1061/(ASCE)0899-1561(1993)5:4(478)

8. Eldin, N. N. and A. B. Senouci, "Rubber-tire particles as concrete aggregate," Journal of Material in Civil Engineering, Vol. 5, No. 4, 478-496, 1993.

9. TNRCC, The many uses of crumb rubber, Texas Natural Resource Conservation Commission, Waste Tire Recycling Program, Office of Permitting, 1999.

10. Paul, J., , Vol. 14, 787-802, Encyclopedia of Polymer Science and Engineering, 1985.

11. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design,, John Wiley & Sons, New Jersey, United States of America, 1998.

12. Simcik, P., "Anechoic Chamber | Condition in Use, Version 1.03," University of Adelaide, 2009.

13. Bronzoek Ltd., "Rice husk ash market study," Bronzoek Ltd., 2003.
doi:http://www.berr.gov.uk/files/file15138.pdf

14. Yusof, I. M., N. A. Farid, and Z. A. Zainal, "Characterisation of rice husk for cyclone gasifier," Journal of Applied Sciences, Vol. 8, No. 4, 622-628, 2008.

15. Ahiduzzaman, M. and A. K. M. S. Islam, "Environmental impact of rice husk briquette fuel use in Bangladesh: A case study of Mymensingh," 1st International Conference on the Developments in Renewable Energy Technology (ICDRET), 1-4, 2009.

16. Habeeb, G. A. and M. M. Fayyadh, "Rice husk ash concrete: The e®ect of RHA average particle size on mechanical properties and drying shrinkage," Australian Journal of Basic and Applied Sciences, Vol. 3, No. 3, 1616-1622, 2009.
doi:10.2528/PIER10041003

17. Nornikman, H., F. Malek, P. J. Soh, A. A. H. Azremi, F. H. Wee, and A. Hasnain, "Parametric studies of pyramidal microwave absorber using rice husk," Progress In Electromagnetics Research, Vol. 104, 145-166, 2010.
doi:10.1109/MAP.2003.1282178

18. Chung, B.-K. and H.-T. Chuah, "Design and construction of a multipurpose wideband anechoic chamber," IEEE Antennas and Propagation Magazine, Vol. 45, No. 6, 41-47, 2004.

19. Pues, H., Y. Arien, and F. Demming-Jansen, "Numerical evaluation of absorber reflectivity in an artificial waveguide," 20th International Zurich Symposium on Electromagnetic Compability, 144-149, 2009.

20. Cumming Microwave Corporatio, "Technical data for C-RAM FAC: High performance convoluted absorber,", 1-2, 1997.

21. TDK RF Solution Inc., "Absorber for microwave and millimeter wave test chamber,", 9-10, 2008.
doi:10.2528/PIER10101203

22. Nornikman, H., M. F. B. A. Malek, M. Ahmed, F. H. Wee, P. J. Soh, A. A. H. Azremi, S. A. Ghani, A. Hasnain, and M. N. Taib, "Setup and results of pyramidal microwave absorbers using rice husks ," Progress In Electromagnetics Research, Vol. 111, 141-161, 2011.

23. Nornikman, H., P. J. Soh, and A. A. H. Azremi, "Performance simulation of pyramidal and wedge microwave absorbers," 3rd Asian Modelling Symposium (AMS 2009), 649-654, 2009.

24. Nornikman, H., P. J. Soh, A. A. H. Azremi, F. H. Wee, and M. F. Malek, "Investigation of agricultural waste as an alternative material for microwave absorb," PIERS Online, Vol. 5, No. 6, 506-510, 2009.

25. Wee, F. H., P. J. Soh, A. H. M. Suhaizal, H. Nornikman, and A. A. M. Ezanuddin, "Free space Measurement technique on dielectric properties of agricultural residues at microwave frequencies," International Microwave and Optoelectronics Conference (IMOC 2009), 182-187, 2009.

26. Nornikman, H., F. Malek, P. J. Soh, A. A. H. Azremi, F. Wee, and A. Hasnain, "Measurement of pyramidal microwave absorbers using RCS methods," The 3rd International Conference on Intelligent & Advanced Systems (ICIAS 2010), 1-5, 2010.
doi:10.1109/APACE.2007.4603966

27. Hasnain, A., B. M. Ha¯z, S. Roslan, M. I. Imran, A. A. Takyuddin, A. Rusnani, and O. M. Khusairi, "Development of an economic and effective microwave absorber," 2007 Asia-Pacific Conference on Applied Electromagnetics (APACE 2007), 1-5, 2007.
doi:10.1109/15.328860

28. Holloway, C. L. and E. F. Kuester, "A low-frequency model for wedge or pyramidal absorber arrays II: Computed and measured results ," IEEE Transactions on Electromagnetic Compatibility, Vol. 36, No. 4, 300-306, 1994.
doi:10.2528/PIERB09122102

29. Razavi, S. M. J., M. Khalaj-Amirhosseini, and A. Cheldavi, "Minimum usage of ferrite tiles in anechoic chambers," Progress In Electromagnetics Research B, Vol. 19, 367-383, 2010.
doi:10.2528/PIER10071409

30. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIERL09012003

31. Wang, J., S. Qu, Z. Fu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators ," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.
doi:10.2528/PIERB08062902

32. Razavi, S. M. J. and M. Khalaj-Amirhosseini, "Optimization an anechoic chamber with ray-tracing and genetic algorithms," Progress In Electromagnetics Research B, Vol. 9, 53-68, 2008.

33. Kajehp, A. and S. A. Mirtaheri, "Analysis of pyramidal EM wave absorber by FDTD method and comparing with capacitance and homogenization method," Progress In Electromagnetic Research Letters, Vol. 3, 123-131, 2008.
doi:10.2528/PIERB09122102

34. Razavi, S. M. J., M. Khalaj-Amirhosseini, and A. Cheldavi, "Minimum usage of ferrite tiles in anechoic chambers," Progress In Electromagnetics Research B, Vol. 19, 367-383, 2010.
doi:10.2528/PIER10071409

35. Li, M., H.-L. Yang, X.-W. Hou, Y. Tian, and D.-Y. Hou, "Perfect metamaterial absorber with dual bands," Progress In Electromagnetics Research, Vol. 108, 37-49, 2010.
doi:10.2528/PIERL09012003

36. Wang, J., S. Qu, Z. Fu, H. Ma, Y. Yang, X. Wu, Z. Xu, and M. Hao, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetics Research Letters, Vol. 7, 15-24, 2009.
doi:10.2528/PIERB08062902

37. Razavi, S. M. J. and M. Khalaj-Amirhosseini, "Optimization an anechoic chamber with ray-tracing and genetic algorithms," Progress In Electromagnetics Research B, Vol. 9, 53-68, 2008.
doi:10.2528/PIERL09051204

38. Leon Fernandez, G., S. Loredo, S. Zapatero, and F. Las-Heras, "Radiation pattern retrieval in non-anechoic chambers using thematrix pencil algorithm ," Progress In Electromagnetics Research Letters, Vol. 9, 119-127, 2009.
doi:10.2528/PIERL08021802

39. Khajehpour, A. and S. A. Mirtaheri, "Analysis of pyramid EM wave absorber by FDTD method and comparing with capacitanceand homogenization methods ," Progress In Electromagnetics Research Letters, Vol. 3, 123-131, 2008.
doi:10.2528/PIERB09040902

40. Huang, R., Z.-W. Li, L. B. Kong, L. Liu, and S. Matitsine, "Analysis and design of an ultra-thin metamaterial absorber," Progress In Electromagnetics Research B, Vol. 14, 407-429, 2009.
doi:10.2528/PIER07101702

41. Chamaani, S., S. A. Mirtaheri, M. Teshnehlab, M. A. Shoorehdeli, and V. Seydi, "Modifed multi-objective particle swarm optimization for electromagnetic absorber design," Progress In Electromagnetics Research, Vol. 79, 353-336, 2008.
doi:10.2528/PIER08042805

42. Ramprecht, J., M. Norgren, and D. Sjoberg, "Scattering from a thin magnetic layer with a periodic lateral magnetization: Application to electromagnetic absorbers," Progress In Electromagnetics Research, Vol. 83, 199-224, 2008.

43. Latrach, L., N. D. Sboui, A. Gharsallah, A. Gharbi, and H. Baudrand, "A design and modelling of microwave active screen using a combination of the rectangular and periodic waveguides modes," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 11--12, 1639-1648, 2009.
doi:10.1163/156939310793699046

44. Kadiroglu, F. and U. C. Hasar, "A highly accurate microwave method for permittivity determination using corrected scattering parameter measurements," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 16, 2179-2189, 2010.
doi:10.1163/156939310791585972

45. Wu, G., X. G. Zhang, and B. Liu, "A hybrid method for predicting the shielding e®ectiveness of rectangular metallic enclosures with thickness apertures," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 8--9, 1157-1169, 2010.

46. Stuchly, M. A. and S. S. Stuchly, "Coaxial line reflection methods for measuring dielectric properties of biological substances at radio and microwave frequencies | A review," IEEE Trans. Instrum. Meas., Vol. 30, 228-229, 1980.

47. Marcuvitz, N., Waveguide Handbook, 1-428, McGraw-Hill, New New, 1951.
doi:10.1109/TMTT.1983.1131507

48. Gajda, G. B. and S. S. Stuchly, "Numerical analysis of open-ended coaxial lines," IEEE Trans. & Microwave Theory Tech., Vol. 31, 380-384, 1983.
doi:10.1109/TMTT.1982.1131022

49. Stuchly, M. A., T. W. Athley, G. M. Samaras, and G. E. Taylor, "Measurement of radio frequency permittivity of biological tissue with an open-ended coaxial line: Part II | Experimental results," IEEE Trans. & Microwave Theory Tech., Vol. 30, No. 1, 87-92, 1982.

50. Anderson, J. M., G. B. Gajda, and S. S. Stuchly, "Analysis of an open-ended coaxial line sensor in layer dielectric," IEEE Trans. Instrum. Meas., Vol. 35, 13-18, 1986.
doi:10.1109/TMTT.1987.1133782

51. Misra, D., "A quasi-static analysis of open-ended coaxial lines," IEEE Trans. & Microwave Theory Tech., Vol. 35, 925-928, 1987.

52. Stuchly, M. A., M. M. Brady, S. S. Stuchly, and G. Gadja, "Equivalent circuit of an open-ended coaxial line in a lossy material," IEEE Trans. Instrum. Meas., Vol. 31, 116-119, 1982.
doi:10.1109/TMTT.1984.1132810

53. Bryant, J. H., "Coaxial transmission lines, related two-conductor transmission lines, connector, and components: A.U.S. historical perspective," IEEE Trans. & Microwave Theory Tech., Vol. 32, No. 9, 970-983, 1984.

54. You, K. Y. and Z. Abbas, Open-ended Coaxial Sensor Handbook: Formulations, Microwave Measurements and Applications, LAP Lambert Academic Publishing, 2010.

55. Inan, U. S. and A. S. Inan, Electromagnetics Waves,07458, Prentice-Hall, Inc., Upper Saddle River, NJ, 2000.

56. Weisstein, E., "Eric Weisstein's World of Science,".
doi:http://scienceworld.wolfram.com/physics/, 2008

57. Lim, K.-S., J.-Y. Koay, V. C. Koo, and H.-T. Ewe, "High angular resolution measurements of the monostatic backscattering coe±cient of rice fields," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 1, 1-10, 2009.
doi:10.1163/156939310792149759

58. Barroso, J. J. and A. L. de Paula, "Retrieval of permittivity and permeability of homogeneous materials from scatteringparameters ," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 11--12, 1563-1574, 2010.
doi:10.1163/156939309788019831

59. Jin, H., S. R. Dong, and D. Wang, "Measurement of dielectric constant of thin film materials at microwave frequencies," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 5--6, 809-817, 2009.
doi:10.1163/156939310791036287

60. Zhang, H., S. Y. Tan, and H. S. Tan, "Experimental investigation on °anged parallel-plate dielectric waveguide probe for detection of conductive nclusions in lossy dielectric medium," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 5--6, 681-693, 2010.
doi:10.2528/PIER10101208

61. Hasar, U. C., "Microwave method for thickness-independent permittivity extraction of low-loss dielectric materials from transmission measurements," Progress In Electromagnetics Research, Vol. 110, 453-467, 2010.
doi:10.2528/PIER09061401

62. Hasar, U. C., O. Simsek, M. K. Zateroglu, and A. E. Ekinci, "A microwave method for unique and non-ambiguous permittivity determination of liquid materials from measured uncalibrated scattering parameters," Progress In Electromagnetics Research, Vol. 95, 73-85, 2009.
doi:10.2528/PIER09041405

63. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, Vol. 93, 161-176, 2009.
doi:10.2528/PIER09020801

64. Hasar, U. C. and O. Simsek, "On the application of microwave calibration-independent measurements for noninvasive thickness evaluation of medium- or low-loss solid materials," Progress In Electromagnetics Research, Vol. 91, 377-392, 2009.
doi:10.2528/PIER09091402

65. Chang, H.-W., Y.-H. Wu, S.-M. Lu, W.-C. Cheng, and M.-H. Sheng, "Field analysis of dielectric waveguide devices based on coupled transverse-mode integral equation-numerical investigation," Progress In Electromagnetics Research, Vol. 97, 159-176, 2009.

66. Lesurf, J., ``Warp factor !", University of St. Andrews, http://www.st-andrews.ac.uk/~www pa/Scots_Guide/info/comp/passive/capacit/dielec/di const/dicon.html, 2006.
doi:10.1109/22.390198

67. Neelakanta, P. S. and J. C. Park, "Microwave absorption by conductor loaded dielectric," IEEE Transactions on Microwave Theory and Technique, Vol. 43, No. 6, 1381-1383, 1995.
doi:10.2528/PIER09030904

68. Li, E., Z.-P. Nie, G. Guo, Q. Zhang, Z. Li, and F. He, "Broadband measurements of dielectric properties of low-loss materials at high temperatures using circular cavity method," Progress In Electromagnetics Research, Vol. 92, 103-120, 2009.
doi:10.2528/PIER09011702

69. Hasar, U. C. and O. Simsek, "An accurate complex permittivity method for thin dielectric materials," Progress In Electromagnetics Research, Vol. 91, 123-138, 2009.
doi:10.2528/PIER09071409

70. Hasar, U. C., "Permittivity determination of fresh cement-based materials by an open-ended waveguide probe using amplitude-only measurements," Progress In Electromagnetics Research, Vol. 97, 27-43, 2009.
doi:10.2528/PIER09062501

71. Hasar, U. C., "Permittivity measurement of thin dielectric materials from reflection-only measurements using one-port vector network analyzers," Progress In Electromagnetics Research, Vol. 95, 365-380, 2009.
doi:10.2528/PIERB10090103

72. Asi, M. and N. I. Dib, "Design of multilayer microwave broadband absorbers using central force optimization," Progress In Electromagnetics Research B, Vol. 26, 101-113, 2010.
doi:10.2528/PIERB09041706

73. Remillard, S. K., A. Hardaway, B. Mork, J. Gilliland, and J. Gibbs, "Using a re-entrant microwave resonator to measure and model the dielectric breakdown electric field of gases," Progress In Electromagnetics Research B, Vol. 15, 175-195, 2009.
doi:10.2528/PIERL09021605

74. Helhel, S., B. Colak, and Ş. ÄOzen, "Measurement of dielectric constant of thin leaves by moisture content at 4mm band," Progress In Electromagnetics Research Letters, Vol. 7, 183-191, 2009.
doi:10.2528/PIERL08072403

75. Chou, Y.-H., M.-J. Jeng, Y.-H. Lee, and Y.-G. Jan, "Measurement of RF PCB dielectric properties and losses," Progress In Electromagnetics Research Letters, Vol. 4, 139-148, 2008.
doi:10.1109/TMTT.2010.2040406

76. Simpkin, R., "Derivation of lichtenecker's logarithmic mixture formula from Maxwell's equations," IEEE Trans. on MTT, Vol. 58, No. 3, 2010.

77. Agilent Technologies Inc., Agilent basics of measuring the dielectric properties of materials, 1-32, Santa Clara, California, United States of America.

78. Agilent Techonlogies Inc., Agilent 85070E, dielectric Probe Kit, 200MHz to 50 GHz, 1-12, Santa Clara, California, United States of America, 2008.
doi:10.1002/9780470822746

79. Gupta, M. and W. W. L. Eugene, Microwaves and Metals, John Wiley & Sons, New Jersey, United States of America, 2007.
doi:10.1109/MAP.2008.4562276

80. Fischer, B. and I. Lahaie, "Recent microwave absorber wall-reflectivity measurement methods," IEEE Antennas and Propagation Magazine, Vol. 50, No. 2, 140-147, 2008.


© Copyright 2014 EMW Publishing. All Rights Reserved