PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 116 > pp. 441-456

IMPLEMENTATION OF THE FDTD METHOD BASED ON LORENTZ-DRUDE DISPERSIVE MODEL ON GPU FOR PLASMONICS APPLICATIONS

By K. H. Lee, I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung

Full Article PDF (324 KB)

Abstract:
We present a three-dimensional finite difference time domain (FDTD) method on graphics processing unit (GPU) for plasmonics applications. For the simulation of plasmonics devices, the Lorentz-Drude (LD) dispersive model is incorporated into Maxwell equations, while the auxiliary differential equation (ADE) technique is applied to the LD model. Our numerical experiments based on typical domain sizes as well as plasmonics environment demonstrate that our implementation of the FDTD method on GPU offers significant speed up as compared to the traditional CPU implementations.

Citation:
K. H. Lee, I. Ahmed, R. S. M. Goh, E. H. Khoo, E. P. Li, and T. G. G. Hung, "Implementation of the FDTD Method Based on Lorentz-Drude Dispersive Model on GPU for Plasmonics Applications," Progress In Electromagnetics Research, Vol. 116, 441-456, 2011.
doi:10.2528/PIER11042002
http://www.jpier.org/PIER/pier.php?paper=11042002

References:
1. Swanson, D. G. and W. J. R. Hofer, Microwave Circuit Modeling Using Electromagnetic Field Simulation, Artech House Inc., Norwood, MA, 2003.

2. Ahmed, I., E. H. Khoo, E. P. Li, and R. Mittra, "A hybrid approach for solving coupled Maxwell and Schrödinger equations arising in the simulation of nano-devices," IEEE Antennas and Wireless Component Letters, Vol. 9, 914-916, 2010.
doi:10.1109/LAWP.2010.2076411

3. Volakis, J. L., A. Chatterjee, and L. C. Kempel, Finite Element Method for Electromagnetics: Antennas, Microwave Circuits, and Scattering Applications, Wiley-IEEE, 1998.

4. Liu, Z. H., E. K. Chua, and K. Y. See, "Accurate and efficient evaluation of method of moments matrix based on a generalized analytical approach," Progress In Electromagnetics Research, Vol. 94, 367-382, 2009.
doi:10.2528/PIER09063002

5. Yee, K. S. and Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media, "IEEE Trans. Antennas Propag.,", Vol. 14, 302-307, May 1966.

6. Zheng, F., Z. Chen, and J. Zhang, "A finite-difference time-domain method without the Courant stability conditions," IEEE Microw. Guided Wave Lett., Vol. 9, No. 11, 441-443, 1999.
doi:10.1109/75.808026

7. Ahmed, I., E. K. Chua, E. P. Li, and Z. Chen, "Development of the three dimensional unconditionally stable LOD-FDTD method," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3596-3600, 2008.
doi:10.1109/TAP.2008.2005544

8. Gaidamauskaite, E. and R. Baronas, "A comparison of finite difference schemes for computational modelling of biosensors," Nonlinear Analysis: Modelling and Control, Vol. 12, 359-369, 2007.

9. Yang, S., Y. Chen, and Z.-P. Nie, "Simulation of time modulated linear antenna arrays using the FDTD method," Progress In Electromagnetics Research, Vol. 98, 175-190, 2009.
doi:10.2528/PIER09092507

10. Chen, J., "Application of the nearly perfectly matched layer for seismic wave propagation in 2D homogeneous isotropic media," Geophysical Prospecting, 2011, doi: 10.1111/j.1365-2478.2011.00949.x.

11. Ingo, W., "Finite difference time-domain simulation of electro-magnetic fields and microwave circuits," International Journal of Numerical Modelling, Vol. 5, 163-182.

12. Seo, M., et al., "Nonlinear dispersive three-dimensional finite-difference time-domain analysis for photonic-crystal lasers," Opt. Express, Vol. 13, 9645-9651, 2005.
doi:10.1364/OPEX.13.009645

13. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 3rd Ed., Artech House, Norwood, MA, 2005.

14. Maxfield, C., The Design Warrior's Guide to FPGAs, Elsevier, 2004.

15. Elsherbeni, A. Z. and V. Demir, The Finite-Difference Time-Domain Method for Electromagnetics with Matlab Simulations, SciTech Pub., 2009.

16. Zunoubi, M. R., J. Payne, and W. P. Roach, "CUDA implementation of TEz-FDTD solution of Maxwell's equations in dispersive media ," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 756-759, 2010.
doi:10.1109/LAWP.2010.2060181

17. Savioja, L., Real-time 3D finite-difference time-domain simulation of low and mid frequency room acoustics, Proc. of the 13th Int. Conference on Digital Audio E®ects (DAFx-10), Graz, Austria, September 6-10, 2010.

18. Chen, S., S. Dong, and X.-L. Wang, "GPU-based accelerated FDTD simulations for double negative (DNG) materials applications," International conference on Microwave and Millimeter Wave Technology (ICMMT) , 839-841, 2010.
doi:10.1109/ICMMT.2010.5525091

19. Shams, R. and P. Sadeghi, "On optimization of finite-difference time-domain (FDTD) computation on heterogeneous and GPU clusters," J. Parallel Distrib. Comput., 2010.

20. Zainud-Deen, S. H., E. Hassan, M. S. Ibrahim, K. H. Awadalla, and A. Z. Botros, "Electromagnetic scattering using GPU based finite difference frequency domain method," Progress In Electromagnetics Research B, Vol. 16, 351-369, 2009.
doi:10.2528/PIERB09060703

21. Maier, S. A., Plasmonics: Fundamentals and Applications, Springer-Verlag, 2007.

22. Ahmed, I., C. E. Png, E. P. Li, and R. Vahldieck, "Electromagnetic propagation in a novel Ag nanoparticle based plasmonic structure," Opt. Express, Vol. 17, 337-345, 2009.
doi:10.1364/OE.17.000337

23. Shalaev, V. M. and S. Kawata, Nanophotonics with Surface Plasmons (Advances in Nano-Optics and Nano-Photonics), Elsevier, 2007.

24. Okoniewski, M., M. Mrozowski, and M. A. Stuchly, "Simple treatment of multi-term in FDTD," IEEE Micro. Guided Wave Lett., Vol. 7, No. 5, May 1997.

25. Baumann, D., C. Fumeaux, C. Hafner, and E. P. Li, "A modular implementation of dispersive materials for time-domain simulations with application to gold nanospheres at optical frequencies," Opt. Express, Vol. 17, No. 17, 15186-15200, August 2009.
doi:10.1364/OE.17.015186

26. Shibayama, J., A. R. Nomura Ando, J. Yamauchi, and H. Nakano, "A frequency-dependent LOD-FDTD method and its application to the analyses of plasmonic waveguide devices," IEEE Journal of Quantum Electronics, Vol. 46, No. 1, 40-49, 2010.
doi:10.1109/JQE.2009.2024328

27. Zhang, Y. Q. and D. B. Ge, "A unified FDTD approach for electromagnetic analysis of dispersive objects," Progress In Electromagnetics Research, Vol. 96, 155-172, 2009.
doi:10.2528/PIER09072603

28. Wei, B., S.-Q. Zhang, Y.-H Dong, and F. Wang, "A general FDTD algorithm handling thin dispersive layer," Progress In Electromagnetics Research B, Vol. 18, 243-257, 2009.
doi:10.2528/PIERB09090306

29. Mur, G., "Absorbing boundary conditions for the finite difference approximation of the time domain electromagnetic field equations," IEEE Transaction on Electromagnetic Compatibility, Vol. 23, No. 4, 337-382, November 1981.

30. Vial, A., A. S. Grimault, D. Macias, D. Barchiesi, and M. D. Chapelle, "Improved analytical fit of gold dispersionApplication to the modeling of extinction spectra with a finite-difference time-domain method," Physical Review B, Vol. 71, No. 8, 085416, February 2005.
doi:10.1103/PhysRevB.71.085416

31. Xu, K., Z. Fan, D.-Z. Ding, and R.-S. Chen, "Gpu accelerated unconditionally stable crank-nicolson FDTD method for the analysis of three-dimensional microwave circuits ," Progress In Electromagnetics Research, Vol. 102, 381-395, 2010.
doi:10.2528/PIER10020606


© Copyright 2014 EMW Publishing. All Rights Reserved