PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 118 > pp. 335-354

ELECTRIC FIELD DISCONTINUITY-CONSIDERED EFFECTIVE-PERMITTIVITIES AND INTEGRATION-TENSORS FOR THE THREE-DIMENSIONAL FINITE-DIFFERENCE TIME-DOMAIN METHOD

By Y.-G. Lee

Full Article PDF (709 KB)

Abstract:
Electric field Discontinuity-Considered Effective-Permittivities and Integration-Tensors (DC-EP&IT) for the three-dimensional Finite-Difference Time-Domain (FDTD) method are derived using a contour-path approach that considers the jump in the electric field at the interface of two dielectric materials. This is a natural but not so obvious extension to the work by Mohammandi et al. [1] from two to three-dimensions. Proposed method is verified by comparing with the exact Mie theory as well as the staircase, volume-averaged and subpixel methods.

Citation:
Y.-G. Lee, "Electric Field Discontinuity-Considered Effective-Permittivities and Integration-Tensors for the Three-Dimensional Finite-Difference Time-Domain Method," Progress In Electromagnetics Research, Vol. 118, 335-354, 2011.
doi:10.2528/PIER11060304
http://www.jpier.org/PIER/pier.php?paper=11060304

References:
1. Mohammadi, A., H. Nadgaran, and M. Agio, "Contour-path effective permittivities for the two-dimensional finite-difference time-domain method," Optics Express, Vol. 13, 10367-10381, 2005.
doi:10.1364/OPEX.13.010367

2. Kaneda, N., B. Houshmand, and T. Itoh, "FDTD analysis of dielectric resonators with curved surfaces," IEEE Transactions on Microwave Theory and Techniques, Vol. 45, 1645-1649, 1997.
doi:10.1109/22.622937

3. Yu, W. and R. Mittra, "A conformal finite difference time domain technique for modeling curved dielectric surfaces," IEEE Microwave and Wireless Components Letters, Vol. 11, 25-27, 2001.
doi:10.1109/7260.905957

4. Dey, S. and R. Mittra, "A conformal finite-difference time-domain technique for modeling cylindrical dielectric resonators," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 1737-1739, 1999.
doi:10.1109/22.788616

5. Farjadpour, A., D. Roundy, A. Rodriguez, M. Ibanescu, P. Bermel, J. D. Joannopoulos, and S. G. Johnson, "Improving accuracy by subpixel smoothing in the finite-difference time domain," Optics Letters, Vol. 31, 2972-2974, 2006.
doi:10.1364/OL.31.002972

6. Oskooi, F., C. Kottke, and S. G. Johnson, "Accurate finite-difference time-domain simulation of anisotropic media by subpixel smoothing," Optics Letters, Vol. 34, 2778-2780, 2009.
doi:10.1364/OL.34.002778

7. Deinega, A. and I. Valuev, "Subpixel smoothing for conductive and dispersive media in the finite-difference time-domain method," Optics Letters, Vol. 32, 3429-3431, 2007.
doi:10.1364/OL.32.003429

8. Mohammadi, A., T. Jalali, and M. Agio, "Dispersive contour-path algorithm for the two-dimensional finite-difference time-domain method," Optics Express, Vol. 16, 7397-7406, 2008.
doi:10.1364/OE.16.007397

9. Lee, J.-Y. and N.-H. Myung, "Locally tensor conformal FDTD method for modeling arbitrary dielectric surfaces," Microwave and Optical Technology Letters, Vol. 23, 245-249, 1999.
doi:10.1002/(SICI)1098-2760(19991120)23:4<245::AID-MOP17>3.0.CO;2-V

10. Meade, R. D., A. M. Rappe, K. D. Brommer, J. D. Joannopoulos, and O. L. Alerhand, "Accurate theoretical analysis of photonic band-gap materials," Physical Review B, Vol. 48, 8434, 1993.
doi:10.1103/PhysRevB.48.8434

11. Cychosz, J. M., W. N. Waggenspack, and Jr., "Intersecting a ray with quadric surface," Graphics Gems III, 275-283, Academic Press Professional, Inc., 1992.

12. Sung, S.-Y. and Y.-G. Lee, "Trapping of a micro-bubble by non-paraxial Gaussian beam: Computation using the FDTD method," Optics Express, Vol. 16, 3463-3473, 2008.
doi:10.1364/OE.16.003463

13. Wiscombe, W. J., "Improved Mie scattering algorithms," Appl. Opt., Vol. 19, 1505-1509, 1980.
doi:10.1364/AO.19.001505


© Copyright 2014 EMW Publishing. All Rights Reserved