PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 121 > pp. 505-520

PARALLEL IMPLEMENTATION OF MLFMA FOR HOMOGENEOUS OBJECTS WITH VARIOUS MATERIAL PROPERTIES

By O. Ergul

Full Article PDF (2,096 KB)

Abstract:
We present a parallel implementation of the multilevel fast multipole algorithm (MLFMA) for fast and accurate solutions of electromagnetics problems involving homogeneous objects with diverse material properties. Problems are formulated rigorously with the electric and magnetic current combined-field integral equation~(JMCFIE) and solved iteratively using MLFMA parallelized with the hierarchical partitioning strategy. Accuracy and efficiency of the resulting implementation are demonstrated on canonical problems involving perfectly conducting, lossless dielectric, lossy dielectric, and double-negative spheres.

Citation:
O. Ergul, "Parallel Implementation of MLFMA for Homogeneous Objects with Various Material Properties," Progress In Electromagnetics Research, Vol. 121, 505-520, 2011.
doi:10.2528/PIER11092501
http://www.jpier.org/PIER/pier.php?paper=11092501

References:
1. Gürel, L., H. Bagci, J. C. Castelli, A. Cheraly, and F. Tardivel, "Validation through comparison: Measurement and calculation of the bistatic radar cross section (BRCS) of a stealth target," Radio Sci., Vol. 38, No. 3, Jun. 2003.

2. Taboada, J. M., J. Rivero, F. Obelleiro, M. G. Araujo, and L. Landesa, "Method-of-moments formulation for the analysis of plasmonic nano-optical antennas," J. Opt. Soc. Am. A, Vol. 28, No. 7, 1341-1348, Jun. 2011.

3. Ergül, Ö, "Solutions of large-scale dielectric problems with the parallel multilevel fast multipole algorithm," J. Opt. Soc. Am. A, Vol. 28, No. 11, 2261-2268, Nov. 2011.

4. Gürel, L., Ö. Ergül, A. Ünal, and T. Malas, "Fast and accurate analysis of large metamaterial structures using the multilevel fast multipole algorithm," Progress In Electromagnetics Research, Vol. 95, 179-198, 2009.

5. Ergül, Ö., T. Malas, and L. Gürel, "Analysis of dielectric photonic-crystal problems with MLFMA and schur-complement preconditioners ," J. Lightwave Technol., Vol. 29, No. 6, 888-897, Mar. 2011.

6. Gan, H. and W. C. Chew, "A discrete BCG-FFT algorithm for solving 3-D inhomogeneous scatterer problems," Journal of Electromagnetic Waves and Applications, Vol. 9, No. 10, 1339-1357, 1995.

7. Yuan, N., T. S. Yeo, X. C. Nie, L. W. Li, and Y. B. Gan, "Analysis of scattering from composite conducting and dielectric targets using the precorrected-FFT algorithm," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 3, 499-515, 2003.

8. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 5, 1225-1251, 1996.

9. Song, J., C.-C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects ," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, Oct. 1997.

10. Sheng, X.-Q., J.-M. Jin, J. Song, W. C. Chew, and C.-C. Lu, "Solution of combined-field integral equation using multilevel fast multipole algorithm for scattering by homogeneous bodies," IEEE Trans. Antennas Propag., Vol. 46, No. 11, 1718-1726, Nov. 1998.

11. Peng, Z., X.-Q. Sheng, and F. Yin, "An efficient twofold iterative algorithm of Fe-Bi-MLFMA using multilevel inverse-based ilu preconditioning," Progress In Electromagnetics Research, Vol. 93, 369-384, 2009.

12. Islam, S., J. Stiens, G. Poesen, R. Vounckx, J. Peeters, I. Bogaert, D. De Zutter, and W. De Raedt, "Simulation and experimental verification of W-band finite frequency selective surfaces on infinite background with 3D full wave solver NSPWMLFMA ," Progress In Electromagnetics Research, Vol. 101, 189-202, 2010.

13. Yang, M.-L. and X.-Q. Sheng, "Parallel high-order Fe-Bi-MLFMA for scattering by large and deep coated cavities loaded with obstacles ," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 13, 1813-1823, 2009.

14. Chew, W. C., J.-M. Jin, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, Boston, MA, 2001.

15. Velamparambil, S., W. C. Chew, and J. Song, "10 million unknowns: Is it that big?," IEEE Antennas Propag. Mag., Vol. 45, No. 2, 43-58, Apr. 2003.

16. Gürel, L. and Ö. Ergül, "Fast and accurate solutions of extremely large integral-equation formulations discretised with tens of millions of unknowns ," Electron. Lett., Vol. 43, No. 9, 499-500, Apr. 2007.

17. Pan, X.-M. and X.-Q. Sheng, "A sophisticated parallel MLFMA for scattering by extremely large targets," IEEE Antennas Propag. Mag., Vol. 50, No. 3, 129-138, Jun. 2008.

18. Ergül, Ö. and L. Gürel, "Efficient parallelization of the multilevel fast multipole algorithm for the solution of large-scale scattering problems," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2335-2345, Aug. 2008.

19. Fostier, J. and F. Olyslager, "An asynchronous parallel MLFMA for scattering at multiple dielectric objects," IEEE Trans. Antennas Propag., Vol. 56, No. 8, 2346-2355, Aug. 2008.

20. Fostier, J. and F. Olyslager, "Full-wave electromagnetic scattering at extremely large 2-D objects," Electron. Lett., Vol. 45, No. 5, 245-246, Feb. 2009.

21. Taboada, J. M., L. Landesa, F. Obelleiro, J. L. Rodriguez, J. M. Bertolo, M. G. Araujo, J. C. Mourino, and A. Gomez, "High scalability FMM-FFT electromagnetic solver for supercomputer systems ," IEEE Antennas Propag. Mag., Vol. 51, No. 6, 21-28, Dec. 2009.

22. Araujo, M. G., J. M. Taboada, F. Obelleiro, J. M. Bertolo, L. Landesa, J. Rivero, and J. L. Rodriguez, "Supercomputer aware approach for the solution of challenging electromagnetic problems," Progress In Electromagnetics Research, Vol. 101, 241-256, 2010.

23. Taboada, J. M., M. G. Araujo, J. M. Bertolo, L. Landesa, F. Obelleiro, and J. L. Rodriguez, "MLFMA-FFT parallel algorithm for the solution of large-scale problems in electromagnetics," Progress In Electromagnetics Research, Vol. 105, 15-30, 2010.

24. Ergül, Ö and L. Gürel, "Hierarchical parallelisation strategy for multilevel fast multipole algorithm in computational electromagnetics," Electron. Lett., Vol. 44, No. 1, 3-5, Jan. 2008.

25. Ergül, Ö and L. Gürel, "A hierarchical partitioning strategy for e±cient parallelization of the multilevel fast multipole algorithm," IEEE Trans. Antennas Propagat., Vol. 57, No. 6, 1740-1750, Jun. 2009.

26. Ergül, Ö and L. Gürel, "Rigorous solutions of electromagnetic problems involving hundreds of millions of unknowns," IEEE Antennas Propag. Mag., Vol. 53, No. 1, 18-26, Feb. 2011.

27. Ylä-Oijala, P. and M. Taskinen, "Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects ," IEEE Trans. Antennas Propagat., Vol. 53, No. 3, 1168-1173, Mar. 2005.

28. Ylä-Oijala, P., "Numerical analysis of combined field integral equation formulations for electromagnetic scattering by dielectric and composite objects," Progress In Electromagnetics Research C, Vol. 3, 19-43, 2008.

29. Ergül, Ö. and L. Gürel, "Efficient solution of the electric and magnetic current combined-field integral equation with the multilevel fast multipole algorithm and block-diagonal preconditioning," Radio Sci., Vol. 44, No. 6001, Nov. 2009.

30. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-418, May 1982.

31. Mautz, J. R. and R. F. Harrington, "H-field, E-field, and combined field solutions for conducting bodies of revolution," AEÜ, Vol. 32, No. 4, 157-164, Apr. 1978.

32. Ergül, Ö. and L. Gürel, "Comparison of integral-equation formulations for the fast and accurate solution of scattering problems involving dielectric objects with the multilevel fast multipole algorithm ," IEEE Trans. Antennas Propag., Vol. 57, No. 1, 176-187, Jan. 2009.

33. Ergül, Ö., "Fast and accurate solutions of electromagnetics problems involving lossy dielectric objects with the multilevel fast multipole algorithm," Eng. Anal. Bound. Elem., Vol. 36, 423-432, 2012.

34. Rivero, J., J. M. Taboada, L. Landesa, F. Obelleiro, and I. Garcia-Tunon, "Surface integral equation formulation for the analysis of left-handed metamaterials ," Opt. Express, Vol. 18, No. 15, 15876-15886, 2010.

35. Van Der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems," SIAM J. Sci. Stat. Comput., Vol. 13, No. 2, 631-644, Mar. 1992.

36. Ergül, Ö., T. Malas, and L. Gürel, "Solutions of large-scale electromagnetics problems using an iterative inner-outer scheme with ordinary and approximate multilevel fast multipole algorithms," Progress In Electromagnetics Research, Vol. 106, 203-223, 2010.


© Copyright 2014 EMW Publishing. All Rights Reserved