This paper proposes and designs a new method of dualband omnidirectional planar microstrip antenna array. A cascade of transposed microstrip lines have been adapted to produce effective antenna structures that radiate omnidirectionally, with high efficiency, low reflection, and useful radiation patterns. In this paper, the antenna structure has been found to have low-pass characteristics due to the periodic discontinuities at the transposed junctions. The analysis and design of the low-pass characteristic are performed according to the filter theory of periodic structures and full-wave simulation. Therefore, a relatively higher frequency radiating array is appropriately designed with a low-pass filtering attribute, which prevents the lower frequency radiators from resonating at the relatively higher frequency. An air gap between adjacent transposed sections is proposed in order to enhance impedance matching, and a fork shape stub at the end is used as a virtual short point to enhance radiation at the higher frequency. Finally a single port dualband omnidirectional antenna array is obtained by locating the higher frequency radiating array with low-pass filtering attribute near the antenna feed and a relatively lower frequency radiating array at the end. An example of a dualband omnidirectional planar array is demonstrated experimentally, which operates at 2.32~2.56 GHz and 5.65~6.10 GHz with S11<-10 dB and a stable radiation pattern, and corresponding gains of 7.0~7.6 dBi and 6.9~7.9 dBi respectively.
2. Khaleghi, A., "Diversity techniques with parallel dipole antennas: Radiation pattern analysis," Progress In Electromagnetics Research, Vol. 64, 23-42, 2006.
doi:10.2528/PIER06062401
3. Zaker, R., C. Ghobadi, and J. Nourinia, "A modified microstrip-FED two-step tapered monopole antenna for UWB and WLAN applications," Progress In Electromagnetics Research, Vol. 77, 137-148, 2007.
doi:10.2528/PIER07080701
4. Jaw, J.-L., F.-S. Chen, and D.-F. Chen, "Compact dualband CPW-fed slotted patch antenna for 2.4/5 GHz WLAN operation," Journal of Electromagnetic Waves and Applications, Vol. 23, No. 14-15, 1947-1955, 2009.
doi:10.1163/156939309789932584
5. Panda, J. R. and R. S. Kshetrimayum, "A printed 2.4 GHz/5.8 GHz dual-band monopole antenna with a protruding stub in the ground plane for WLAN and RFID applications," Progress In Electromagnetics Research, Vol. 117, 425-434, 2011.
6. Franklin, C. S., "Improvements in wireless telegraph and telephone aerials," British Patent, No. 242, 342, 1924.
7. Ghosh, S., A. Chakraborty, and S. Sanyal, "Loaded wire antenna as EMI sensor," Progress In Electromagnetics Research, Vol. 54, 19-36, 2005.
doi:10.2528/PIER04080501
8. Poljak, D. and V. Doric, "Wire antenna model for transient analysis of simple grounding systems. Part I: The vertical grounding electrode," Progress In Electromagnetics Research, Vol. 64, 149-166, 2006.
doi:10.2528/PIER06062101
9. Solbach, K., "Microstrip-franklin antenna," IEEE Trans. Antennas Propagat., Vol. 30, No. 4, 773-775, 1982.
doi:10.1109/TAP.1982.1142845
10. Judasz, T. J. and B. B. Balsley, "Improved theoretical and experimental models for the coaxial colinear antenna," IEEE Trans. Antennas Propagat., Vol. 37, 289-296, 1989.
doi:10.1109/8.18724
11. Herscovici, N., Z. Sipus, and P.-S. Kildal, "The cylindrical omnidirectional patch antenna," IEEE Trans. Antennas Propagat., Vol. 49, 1746-1753, Dec. 2001.
doi:10.1109/8.982455
12. Bancroft, R. and B. Bateman, "An omnidirectional microstrip antenna," IEEE Trans. Antennas Propagat., Vol. 52, 3151-3153, Nov. 2004.
13. Bancroft, R. and B. Bateman, "An omnidirectional planar microstrip antenna with low sidelobes," Microwave and Optical Technology Letters, Vol. 42, 68-69, Jul. 2004.
14. Bancroft, R., "Design parameters of an omnidirectional planar microstrip antenna," Microwave and Optical Technology Letters, Vol. 47, No. 5, 414-418, Dec. 2005.
doi:10.1002/mop.21187
15. Li, J.-Y. and Y.-B. Gan, "Multi-band characteristic of open sleeve antenna," Progress In Electromagnetics Research, Vol. 58, 135-148, 2006.
doi:10.2528/PIER05090301
16. Wei, K., Z. Zhang, W. Chen, and Z. Fengm, M. F. Iskander, "A triband shunt-fed omnidirectional planar dipole array," IEEE Antennas Wireless Propag. Lett, Vol. 9, 850-85, 2010.
doi:10.1109/LAWP.2010.2069077
17. Alkanhal, M. A. S., "Composite compact triple-band microstrip antennas," Progress In Electromagnetics Research, Vol. 93, 221-236, 2009.
doi:10.2528/PIER09050407
18. Tze-Meng, O., K. G. Tan, and A. W. Reza, "A dual-band omni-directional microstrip antenna," Progress In Electromagnetics Research, Vol. 106, 363-376, 2010.
doi:10.2528/PIER10052411
19. Si, L.-M. and X. Lv, "CPW-FED multi-band omni-directional planar microstrip antenna using composite metamaterial resonators for wireless communications ," Progress In Electromagnetics Research, Vol. 83, 133-146, 2008.
doi:10.2528/PIER08050404
20. Wu, Y.-J., B.-H. Sun, J.-F. Li, and Q.-Z. Liu, "Triple-band omni-directional antenna for WLAN application," Progress In Electromagnetics Research, Vol. 76, 477-484, 2007.
doi:10.2528/PIER07080601
21. Shum, Y. H., K. M. Luk, and C. H. Chan, "Multi-band base station antenna with compact microstrip resonant cell filters," IEE Proc. - Microw. Antennas Propag., Vol. 151, No. 6, 2004.
doi:10.1049/ip-map:20041047
22. Suh, Y. H. and K. Chang, "A high-efficiency dual-frequency rectenna for 2.45-and 5.8-GHz wireless power transmission," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 7, 2002.
23. Barbarino, S. and F. Consoli, "UWB circular slot antenna provided with an inverted-l notch filter for the 5 GHz WLAN band ," Progress In Electromagnetics Research, Vol. 104, 1-13, 2010.
doi:10.2528/PIER10040507
24. Toh, W. K., X. M. Qing, and Z. N. Chen, "A planar dualband antenna array," IEEE Trans. Antennas Propagat., Vol. 59, No. 3, 833-838, Mar. 2011.
doi:10.1109/TAP.2010.2103039
25. Isom, R., M. F. Iskander, Z. Yun, and Z. Zhang, "Design and development of multiband coaxial continuous transerse stub (CTS) antenna arrays," IEEE Trans. Antennas Propagat., Vol. 52, No. 8, Aug. 2004.
doi:10.1109/TAP.2004.832336
26. Gupta, K. C., R. Garg, and I. J. Bahl, Microstrip Lines and Slotlines, Artech House, Dedham, Mass., 1979.
27. Pozar, D. M., Microwave Engineering, 3rd Ed., John Wiley & Sons, Inc., New York, 2005.