Vol. 124

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-01-27

Design of a Terahertz Polarization Rotator Based on a Periodic Sequence of Chiral-Metamaterial and Dielectric Slabs

By Cumali Sabah and Hartmut G. Roskos
Progress In Electromagnetics Research, Vol. 124, 301-314, 2012
doi:10.2528/PIER11112605

Abstract

The lack of wave-plates for the terahertz region opens the way for novel components/devices enabling polarization control at these frequencies. With the aid of chiral metamaterials - a new class of metamaterials - novel possibilities for the fabrication of multilayer structures for the realization of polarization rotators emerge. In this study, we present design and analysis of a polarization rotator for the terahertz frequency regime based on a multilayer structure consisting of an alternating sequence of chiral-metamaterial- and dielectric-plates. The combination of chiral constituents with dielectrics permits optimization of the spectral-filter and polarization-rotation features. We can generate either polarization-rotation combs or narrow rotation bands with very good and broad sideband suppression, of interest for example for data transmission or sensing purposes.

Citation


Cumali Sabah and Hartmut G. Roskos, "Design of a Terahertz Polarization Rotator Based on a Periodic Sequence of Chiral-Metamaterial and Dielectric Slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.
doi:10.2528/PIER11112605
http://www.jpier.org/PIER/pier.php?paper=11112605

References


    1. Sihvola, A., Electromagnetic emergence in metamaterials, Advances in Electromagnetics of Complex Media and Metamaterials, Vol. 89, S. Zouhdi, A. Sihvola, and M. Arsalane (eds.), NATO Science Series II: Mathematics, Physics, and Chemistry, Kluwer Academic, 2003.

    2. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley-IEEE Press, Piscataway, NJ, 2006.

    3. Solymar, L. and E. Shamonina, Waves in Metamaterials, Oxford University Press, New York, 2009.

    4. Zhou, L., W. Wen, C. T. Chan, and P. Sheng, "Electromagnetic wave tunneling through negative-permittivity media with high magnetic fields," Phys. Rev. Lett., Vol. 94, 243905, 2005.
    doi:10.1103/PhysRevLett.94.243905

    5. Sabah, C., Analysis, Applications, and a Novel Design of Double Negative Metamaterials, Ph.D. Thesis, Gaziantep, Turkey, 2008.

    6. Sabah, C. and S. Uckun, "Physical features of left-handed mirrors in millimeter wave band," J. Optoelectron. Adv. Mater., Vol. 9, 2480-2484, 2007.

    7. Sabah, C. and S. Uckun, "Scattering characteristics of the stratified double-negative stacks using the frequency dispersive cold plasma medium," Zeitschrift für Naturforschung A, Vol. 62a, 247-253, 2007.

    8. Sabah, C. and S. Uckun, "Frequency response of multilayer media comprised of double-negative and double-positive slabs," Chinese Phys. Lett., Vol. 24, 1242-1244, 2007.
    doi:10.1088/0256-307X/24/5/032

    9. Sabah, C. and S. Uckun, "Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.
    doi:10.2528/PIER09031306

    10. Sabah, C., "Numerical study of high reflection coatings with negative and positive refractive indexes," Optoelectron. Adv. Mater.-R.C., Vol. 3, 860-864, 2009.

    11. Gerardin, J. and A. Lakhtakia, "Negative index of refraction and distributed Bragg reflectors," Microw. Opt. Tech. Lett., Vol. 34, 409-411, 2002.
    doi:10.1002/mop.10478

    12. Wu, L., S. He, and L. Chen, "On unusual narrow transmission bands for a multilayered periodic structure containing left-handed materials," Opt. Express, Vol. 11, 1283-1290, 2003.
    doi:10.1364/OE.11.001283

    13. Cory, H. and C. Zach, "Wave propagation in metamaterial multi-layered structures," Microw. Opt. Tech. Lett., Vol. 40, 460-465, 2004.
    doi:10.1002/mop.20005

    14. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 4, 1535-1556, 2005.
    doi:10.1109/TMTT.2005.845188

    15. Sabah, C. and H. G. Roskos, Periodic array of chiral metamaterial-dielectric slabs for the application as terahertz polarization rotator, XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 2011.

    16. Sabah, C. and H. G. Roskos, Terahertz polarization rotator consists of chiral metamaterial and dielectric slabs, IRMMW-THz, Houston, TX, USA, 2011.

    17. Jaggard, D. L., A. R. Mickelson, and C. H. Papas, "On electromagnetic waves in chiral media," Appl. Physics, Vol. 18, 211-216, 1979.
    doi:10.1007/BF00934418

    18. Engheta, N. and D. L. Jaggard, "Electromagnetic chirality and its applications," IEEE AP-S Newsletter, Vol. 30, 6-12, 1988.

    19. Jaggard, D. L., N. Engheta, M. W. Kowarz, P. Pelet, J. C. Liu, and Y. Kim, "Periodic chiral structures," IEEE Trans. Antennas Propag., Vol. 37, 1447-1452, 1989.
    doi:10.1109/8.43564

    20. Sabah, C. and S. Uckun, "Reflection and transmission coefficients of multiple chiral layers," Sci. China Ser. E: Tech. Sci., Vol. 49, 457-467, 2006.
    doi:10.1007/s11431-006-2010-5

    21. Jin, Y. and S. He, "Focusing by a slab of chiral medium," Opt. Express, Vol. 13, 4974-4979, 2005.
    doi:10.1364/OPEX.13.004974

    22. Agranovich, V. M., Y. N. Gartstein, and A. A. Zakhidov, "Negative refraction in gyrotropic media," Phys. Rev. B, Vol. 73, 045114, 2006.
    doi:10.1103/PhysRevB.73.045114

    23. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, 177401, 2006.
    doi:10.1103/PhysRevLett.97.177401

    24. Mackay, T. G. and A. Lakhtakia, "Simultaneous negative- and positive-phase-velocity propagation in an isotropic chiral medium," Microw. Opt. Tech. Lett., Vol. 49, 1245-1246, 2007.
    doi:10.1002/mop.22434

    25. Plum, E., V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett., Vol. 90, 2231131, 2007.
    doi:10.1063/1.2745203

    26. Sabah, C., "Left-handed chiral metamaterials," Cent. Eur. J. Phys., Vol. 6, 872-878, 2008.
    doi:10.2478/s11534-006-0107-x

    27. Plum, E., V. A. Fedotov, and N. I. Zheludev, "Optical activity in extrinsically chiral metamaterial," Appl. Phys. Lett., Vol. 93, 191911, 2008.
    doi:10.1063/1.3021082

    28. Kwon, D.-H., P. L. Werner, and D. H. Werner, "Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation," Opt. Express, Vol. 16, 11802-11807, 2008.
    doi:10.1364/OE.16.011802

    29. Kwon, D. H., D. H. Werner, A. V. Kildishev, and V. M. Shalaev, "Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design," Opt. Express, Vol. 16, 11822-11829, 2008.
    doi:10.1364/OE.16.011822

    30. Wang, B., J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Chiral metamaterials: Simulations and experiments," J. Opt. A: Pure Appl. Opt., Vol. 11, 114003, 2009.
    doi:10.1088/1464-4258/11/11/114003

    31. Zhang, S., Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, "Negative refractive index in chiral metamaterials," Phys. Rev. Lett., Vol. 102, 023901, 2009.
    doi:10.1103/PhysRevLett.102.023901

    32. Xiong, X., W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, "Construction of a chiral metamaterial with a U-shaped resonator assembly," Phys. Rev. B, Vol. 81, 075119, 2010.
    doi:10.1103/PhysRevB.81.075119

    33. Ye, Y. and S. He, "90° polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett., Vol. 96, 203501, 2010.
    doi:10.1063/1.3429683

    34. Wu, Z., B. Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
    doi:10.1163/156939310791285173

    35. Zhao, R., T. Koschny, and C. M. Soukoulis, "Chiral metamaterials: Retrieval of the effective parameters with and without substrate," Opt. Express, Vol. 18, 14553-14567, 2010.
    doi:10.1364/OE.18.014553

    36. Li, J., F.-Q. Yang, and J. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

    37. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research, Vol. 116, 409-423, 2011.

    38. Withayachumnankul, W. and D. Abbott, "Metamaterials in the terahertz regime," IEEE Phot. Journal, Vol. 1, 99-118, 2009.
    doi:10.1109/JPHOT.2009.2026288

    39. Decker, M., M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Letters, Vol. 32, 856-858, 2007.
    doi:10.1364/OL.32.000856

    40. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1355, 2004.
    doi:10.1126/science.1104467

    41. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, No. 121104, 2009.

    42. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four ``U'' split ring resonators," Appl. Phys. Lett., Vol. 97, 081901.1-081901.3, 2010.

    43. Orfanidis, S. J., Electromagnetic Waves and Antennas, ece.rutgers.edu/~orfanidi/ewa/.

    44. Sabah, C., Transmission line modeling method for planar boundaries containing positive and negative index media, IEEE MMET'08 Conference Proceedings, Odessa, Ukraine, 2008.

    45. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.
    doi:10.2528/PIER01082101