Vol. 124

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Design of a Terahertz Polarization Rotator Based on a Periodic Sequence of Chiral-Metamaterial and Dielectric Slabs

By Cumali Sabah and Hartmut G. Roskos
Progress In Electromagnetics Research, Vol. 124, 301-314, 2012


The lack of wave-plates for the terahertz region opens the way for novel components/devices enabling polarization control at these frequencies. With the aid of chiral metamaterials - a new class of metamaterials - novel possibilities for the fabrication of multilayer structures for the realization of polarization rotators emerge. In this study, we present design and analysis of a polarization rotator for the terahertz frequency regime based on a multilayer structure consisting of an alternating sequence of chiral-metamaterial- and dielectric-plates. The combination of chiral constituents with dielectrics permits optimization of the spectral-filter and polarization-rotation features. We can generate either polarization-rotation combs or narrow rotation bands with very good and broad sideband suppression, of interest for example for data transmission or sensing purposes.


Cumali Sabah and Hartmut G. Roskos, "Design of a Terahertz Polarization Rotator Based on a Periodic Sequence of Chiral-Metamaterial and Dielectric Slabs," Progress In Electromagnetics Research, Vol. 124, 301-314, 2012.


    1. Sihvola, A., Electromagnetic emergence in metamaterials, Advances in Electromagnetics of Complex Media and Metamaterials, Vol. 89, S. Zouhdi, A. Sihvola, and M. Arsalane (eds.), NATO Science Series II: Mathematics, Physics, and Chemistry, Kluwer Academic, 2003.

    2. Engheta, N. and R. W. Ziolkowski, Metamaterials: Physics and Engineering Explorations, Wiley-IEEE Press, Piscataway, NJ, 2006.

    3. Solymar, L. and E. Shamonina, Waves in Metamaterials, Oxford University Press, New York, 2009.

    4. Zhou, L., W. Wen, C. T. Chan, and P. Sheng, "Electromagnetic wave tunneling through negative-permittivity media with high magnetic fields," Phys. Rev. Lett., Vol. 94, 243905, 2005.

    5. Sabah, C., Analysis, Applications, and a Novel Design of Double Negative Metamaterials, Ph.D. Thesis, Gaziantep, Turkey, 2008.

    6. Sabah, C. and S. Uckun, "Physical features of left-handed mirrors in millimeter wave band," J. Optoelectron. Adv. Mater., Vol. 9, 2480-2484, 2007.

    7. Sabah, C. and S. Uckun, "Scattering characteristics of the stratified double-negative stacks using the frequency dispersive cold plasma medium," Zeitschrift für Naturforschung A, Vol. 62a, 247-253, 2007.

    8. Sabah, C. and S. Uckun, "Frequency response of multilayer media comprised of double-negative and double-positive slabs," Chinese Phys. Lett., Vol. 24, 1242-1244, 2007.

    9. Sabah, C. and S. Uckun, "Multilayer system of lorentz/drude type metamaterials with dielectric slabs and its application to electromagnetic filters," Progress In Electromagnetics Research, Vol. 91, 349-364, 2009.

    10. Sabah, C., "Numerical study of high reflection coatings with negative and positive refractive indexes," Optoelectron. Adv. Mater.-R.C., Vol. 3, 860-864, 2009.

    11. Gerardin, J. and A. Lakhtakia, "Negative index of refraction and distributed Bragg reflectors," Microw. Opt. Tech. Lett., Vol. 34, 409-411, 2002.

    12. Wu, L., S. He, and L. Chen, "On unusual narrow transmission bands for a multilayered periodic structure containing left-handed materials," Opt. Express, Vol. 11, 1283-1290, 2003.

    13. Cory, H. and C. Zach, "Wave propagation in metamaterial multi-layered structures," Microw. Opt. Tech. Lett., Vol. 40, 460-465, 2004.

    14. Engheta, N. and R. W. Ziolkowski, "A positive future for double-negative metamaterials," IEEE Trans. Microw. Theory Tech., Vol. 4, 1535-1556, 2005.

    15. Sabah, C. and H. G. Roskos, Periodic array of chiral metamaterial-dielectric slabs for the application as terahertz polarization rotator, XXXth URSI General Assembly and Scientific Symposium, Istanbul, Turkey, 2011.

    16. Sabah, C. and H. G. Roskos, Terahertz polarization rotator consists of chiral metamaterial and dielectric slabs, IRMMW-THz, Houston, TX, USA, 2011.

    17. Jaggard, D. L., A. R. Mickelson, and C. H. Papas, "On electromagnetic waves in chiral media," Appl. Physics, Vol. 18, 211-216, 1979.

    18. Engheta, N. and D. L. Jaggard, "Electromagnetic chirality and its applications," IEEE AP-S Newsletter, Vol. 30, 6-12, 1988.

    19. Jaggard, D. L., N. Engheta, M. W. Kowarz, P. Pelet, J. C. Liu, and Y. Kim, "Periodic chiral structures," IEEE Trans. Antennas Propag., Vol. 37, 1447-1452, 1989.

    20. Sabah, C. and S. Uckun, "Reflection and transmission coefficients of multiple chiral layers," Sci. China Ser. E: Tech. Sci., Vol. 49, 457-467, 2006.

    21. Jin, Y. and S. He, "Focusing by a slab of chiral medium," Opt. Express, Vol. 13, 4974-4979, 2005.

    22. Agranovich, V. M., Y. N. Gartstein, and A. A. Zakhidov, "Negative refraction in gyrotropic media," Phys. Rev. B, Vol. 73, 045114, 2006.

    23. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, 177401, 2006.

    24. Mackay, T. G. and A. Lakhtakia, "Simultaneous negative- and positive-phase-velocity propagation in an isotropic chiral medium," Microw. Opt. Tech. Lett., Vol. 49, 1245-1246, 2007.

    25. Plum, E., V. A. Fedotov, A. S. Schwanecke, N. I. Zheludev, and Y. Chen, "Giant optical gyrotropy due to electromagnetic coupling," Appl. Phys. Lett., Vol. 90, 2231131, 2007.

    26. Sabah, C., "Left-handed chiral metamaterials," Cent. Eur. J. Phys., Vol. 6, 872-878, 2008.

    27. Plum, E., V. A. Fedotov, and N. I. Zheludev, "Optical activity in extrinsically chiral metamaterial," Appl. Phys. Lett., Vol. 93, 191911, 2008.

    28. Kwon, D.-H., P. L. Werner, and D. H. Werner, "Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation," Opt. Express, Vol. 16, 11802-11807, 2008.

    29. Kwon, D. H., D. H. Werner, A. V. Kildishev, and V. M. Shalaev, "Material parameter retrieval procedure for general bi-isotropic metamaterials and its application to optical chiral negative-index metamaterial design," Opt. Express, Vol. 16, 11822-11829, 2008.

    30. Wang, B., J. Zhou, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Chiral metamaterials: Simulations and experiments," J. Opt. A: Pure Appl. Opt., Vol. 11, 114003, 2009.

    31. Zhang, S., Y. S. Park, J. Li, X. Lu, W. Zhang, and X. Zhang, "Negative refractive index in chiral metamaterials," Phys. Rev. Lett., Vol. 102, 023901, 2009.

    32. Xiong, X., W. H. Sun, Y. J. Bao, M. Wang, R. W. Peng, C. Sun, X. Lu, J. Shao, Z. F. Li, and N. B. Ming, "Construction of a chiral metamaterial with a U-shaped resonator assembly," Phys. Rev. B, Vol. 81, 075119, 2010.

    33. Ye, Y. and S. He, "90° polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett., Vol. 96, 203501, 2010.

    34. Wu, Z., B. Q. Zeng, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.

    35. Zhao, R., T. Koschny, and C. M. Soukoulis, "Chiral metamaterials: Retrieval of the effective parameters with and without substrate," Opt. Express, Vol. 18, 14553-14567, 2010.

    36. Li, J., F.-Q. Yang, and J. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

    37. Canto, J. R., C. R. Paiva, and A. M. Barbosa, "Dispersion and losses in surface waveguides containing double negative or chiral metamaterials," Progress In Electromagnetics Research, Vol. 116, 409-423, 2011.

    38. Withayachumnankul, W. and D. Abbott, "Metamaterials in the terahertz regime," IEEE Phot. Journal, Vol. 1, 99-118, 2009.

    39. Decker, M., M. W. Klein, M. Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Letters, Vol. 32, 856-858, 2007.

    40. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1355, 2004.

    41. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, No. 121104, 2009.

    42. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four ``U'' split ring resonators," Appl. Phys. Lett., Vol. 97, 081901.1-081901.3, 2010.

    43. Orfanidis, S. J., Electromagnetic Waves and Antennas, ece.rutgers.edu/~orfanidi/ewa/.

    44. Sabah, C., Transmission line modeling method for planar boundaries containing positive and negative index media, IEEE MMET'08 Conference Proceedings, Odessa, Ukraine, 2008.

    45. Kong, J. A., "Electromagnetic wave interaction with stratified negative isotropic media," Progress In Electromagnetics Research, Vol. 35, 1-52, 2002.