Vol. 126

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2012-04-02

Efficient Multiscale Finite Difference Frequency Domain Analysis Using Multiple Macromodels with Compressed Boundaries

By Jakub Podwalski, Piotr Kowalczyk, and Michal Mrozowski
Progress In Electromagnetics Research, Vol. 126, 463-479, 2012
doi:10.2528/PIER12012008

Abstract

In this paper, a novel idea of reducing numerical complexity of finite difference method using multiple macromodels is presented. The efficiency of the macromodeling technique depends on the number of ports of a model. To enhance the efficiency of the algorithm the field samples at the boundary of the macromodel are replaced with amplitudes of discretized Legendre polynomials. Redefining the problem in such manner results in significant reduction of the analysis time. The validity and efficiency of the proposed procedure are demonstrated by performing the analysis of two microwave filters requiring a high density mesh.

Citation


Jakub Podwalski, Piotr Kowalczyk, and Michal Mrozowski, "Efficient Multiscale Finite Difference Frequency Domain Analysis Using Multiple Macromodels with Compressed Boundaries," Progress In Electromagnetics Research, Vol. 126, 463-479, 2012.
doi:10.2528/PIER12012008
http://www.jpier.org/PIER/pier.php?paper=12012008

References


    1. Taflove, A. and K. R. Umashankar, "The finite-difference time-domain method for numerical modeling of electromagnetic wave interactions with arbitrary structures," Progress In Electromagnetics Research, Vol. 02, 287-373, 1990.

    2. Xu, F., Y. Zhang, W. Hong, K. Wu, and T. J. Cui, "Finite-difference frequency-domain algorithm for modeling guided-wave properties ofsubstrate integrated waveguide," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 11, 2221-2227, Nov. 2003.

    3. http://www.cst.com/.

    4. http://www.qwed.com.pl/.

    5. Zheng, G., B. Z. Wang, H. Li, X. F. Liu, and S. Ding, "Analysis of finite periodic dielectric gratings by the finite-difference frequency-domain method with the sub-entire-domain basis functions and wavelets," Progress In Electromagnetics Research, Vol. 99, 453-463, 2009.
    doi:10.2528/PIER09111502

    6. Kusiek, A. and J. Mazur, "Analysis of scattering from arbitrary configuration of cylindrical objects using hybrid finite-difference mode-matching method," Progress In Electromagnetics Research, Vol. 97, 105-127, 2009.
    doi:10.2528/PIER09072804

    7. Chang, H. W., W. C. Cheng, and S. M. Lu, "Layer-mode transparent boundary condition for the hybrid fd-fd method," Progress In Electromagnetics Research, Vol. 94, 175-195, 2009.
    doi:10.2528/PIER09061606

    8. Chang, H. W., Y. H. Wu, and W. C. Cheng, "Hybrid fdfd analysis of crossing waveguides by exploiting both the plus and the cross structural symmetry," Progress In Electromagnetics Research, Vol. 103, 217-240, 2010.
    doi:10.2528/PIER10030202

    9. Kulas, L. and M. Mrozowski, "Multilevel model order reduction," IEEE Microwave and Wireless Components Letters, Vol. 14, No. 4, 165-167, Apr. 2004.
    doi:10.1109/LMWC.2004.827113

    10. Kulas, L. and M. Mrozowski, "Reduced-order models in FDTD," IEEE Microwave and Wireless Components Letters, Vol. 11, No. 10, 422-424, Oct. 2001.
    doi:10.1109/7260.959317

    11. Kulas, L. and M. Mrozowski, "Reduced order models of refined Yee's cells," IEEE Microwave and Wireless Components Letters, Vol. 13, No. 4, 164-166, Apr. 2003.
    doi:10.1109/LMWC.2003.811068

    12. Kulas, L. and M. Mrozowski, "A fast high-resolution 3-D finite-difference time-domain scheme with macromodels," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 9, 2330-2335, Sept. 2004.
    doi:10.1109/TMTT.2004.834585

    13. Kulas, L. and M. Mrozowski, "Low-reflection subgridding," IEEE Transactions on Microwave Theory and Techniques, Vol. 53, No. 5, 1587-1592, May 2005.
    doi:10.1109/TMTT.2005.847048

    14. Kulas, L. and M. Mrozowski, "Macromodels in the frequency domain analysis of microwave resonators," IEEE Microwave and Wireless Components Letters, Vol. 14, 94-96, 2004.
    doi:10.1109/LMWC.2004.825165

    15. Podwalski, J., P. Sypek, L. Kulas, and M. Mrozowski, "FDTD analysis of EBG structures with macromodel cloning," IEEE MTT-S International Microwave Symposium Digest, 296-299, Jun. 11-16, 2006.

    16. Cangellaris, A. C., M. Celik, S. Pasha, and Z. Li, "Electromagnetic model order reduction for system-level modeling," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, 840-850, 1999.
    doi:10.1109/22.769317

    17. Zhu, Y. and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, John Wiley & Sons, Inc., 2006.

    18. Remis, R. F., "An efficient model-order reduction approach to low-frequency transmission line modeling," Progress In Electromagnetics Research, Vol. 101, 139-155, 2010.
    doi:10.2528/PIER09123006

    19. Kowalczyk, P., L. Kulas, and M. Mrozowski, "Analysis of microstructured optical fibers using compact macromodels," Opt. Express, Vol. 19, 19354-19364, 2011.
    doi:10.1364/OE.19.019354

    20. Song, Z., D. Su, F. Duval, and A. Louis, "Model order reduction for PEEC modeling based on moment matching," Progress In Electromagnetics Research, Vol. 114, 285-299, 2011.

    21. Moore, B., "Principal component analysis in linear systems: Controllability, observability, and model reduction," IEEE Trans. Automat. Contr., Vol. 26, 17-32, 1981.
    doi:10.1109/TAC.1981.1102568

    22. Feldmann, P. and R. W. Freund, "Efficient linear circuit analysis by pade approximation via the lanczos process," IEEE Transactions on Computer-Aided Design, Vol. 14, 639-649, 1995.
    doi:10.1109/43.384428

    23. Odabasioglu, A., M. Celik, and L. T. Pileggi, "PRIMA: Passive reduced-order interconnect macromodeling algorithm," 1997 IEEE/ACM International Conference on Computer-Aided Design, 1997. Digest of Technical Papers , 58-65, Nov. 9-13, 1997.

    24. Sheehan, B. N., ENOR: Model order reduction of RLC circuits using nodal equations for efficient factorization, Proc. IEEE 36th Design Automat. Conf., 17-21, 1999.

    25. Chen, Y. and J. White, A quadratic method for nonlinear model order reduction, Proc. Int. Conf. Modeling and Simulation of Microsystems, 477480, 2000.

    26. Rewienski, M. and J. White, "A trajectory piecewise-linear approach to model order reduction and fast simulation of nonlinear circuits and micromachined devices," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 22, No. 2, 155-170, Feb. 2003.
    doi:10.1109/TCAD.2002.806601

    27. Chaturantabut, S. and D. C. Sorensen, "Discrete empirical interpolation for nonlinear model reduction," Proceedings of the 48th IEEE Conference on Decision and Control, 2009 held jointly with the 2009 28th Chinese Control Conference. CDC/CCC 2009, 4316-4321, Dec. 15-18, 2009.

    28. Dohlus, J. M., P. Hahne, X. Du, B. Wagner, T. Weiland, and S. G. Wipf, "Using the Maxwell grid equations to solve large problems," IEEE Transactions on Magnetics, Vol. 29, No. 2, 1914-1917, Mar. 1993.
    doi:10.1109/20.250782

    29. Lech, R. and J. Mazur, "Tunable waveguide filter with bow-tie metallic posts," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 151, No. 2, 156-160, Apr. 2004.
    doi:10.1049/ip-map:20040166

    30., "ANSYS HFSS," 3D Full-wave Electromagnetic Field Simulation, http://www.ansoft.com/products/hf/hfss/overview.cfm.

    31. Belenguer, A., H. Esteban, E. Diaz, C. Bachiller, J. Cascon, and V. E. Boria, "Hybrid technique plus fast frequency sweep for the efficient and accurate analysis of substrate integrated waveguide devices," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, No. 3, 552-560, Mar. 2011.
    doi:10.1109/TMTT.2010.2098884

    32. Zhang, X. C., Z. Y. Yu, and J. Xu, "Novel band-pass substrate integrated waveguide (SIW) filter based on complementary split ring resonators (CSRRS)," Progress In Electromagnetics Research, Vol. 72, 39-46, 2007.
    doi:10.2528/PIER07030201

    33. Zhang, Q. L., W. Y. Yin, S. He, and L. S. Wu, "Evanescent-mode substrate integrated waveguide (SIW) filters implemented with complementary split ring resonators," Progress In Electromagnetics Research, Vol. 111, 419-342, 2011.
    doi:10.2528/PIER10110307