Vol. 127
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2012-04-05
Optimal Design for High-Temperature Broadband Radome Wall with Symmetrical Graded Porous Structure
By
Progress In Electromagnetics Research, Vol. 127, 1-14, 2012
Abstract
This study focuses on electromagnetic and thermo-mechanical optimal design for high-temperature broadband radome wall with symmetrical graded porous structure. The position-dependent porosity increases from the two surfaces of the structure to its intermediate layer. Electromagnetic and thermo-mechanical properties of the proposed structure are investigated simultaneously via numerical simulations. Optimal results suggest that the symmetrical porous structure possesses better broadband transmission performance in the 1-100 GHz frequency range, in contrast to a traditional A-sandwich structure. The thermo-mechanical investigation also indicates that the novel structure meets the requirement for high-temperature (up to 1400°C) applications.
Citation
Licheng Zhou, Yongmao Pei, Rubing Zhang, and Daining Fang, "Optimal Design for High-Temperature Broadband Radome Wall with Symmetrical Graded Porous Structure," Progress In Electromagnetics Research, Vol. 127, 1-14, 2012.
doi:10.2528/PIER12030203
References

1. Kozakoff, D. J., Analysis of Radome Enclosed Antennas, Artech House, Norwood, MA, 1997.

2. Persson, K., M. Gustafsson, and G. Kristensson, "Reconstruction and visualization of equivalent currents on a radome using an integral representation formulation," Progress In Electromagnetics Research B, Vol. 20, 65-90, 2010.
doi:10.2528/PIERB10012109

3. Sukharevsky, O. I. and V. A. Vasilets, "Scattering of reflector antenna with conic dielectric radome," Progress In Electromagnetics Research B, Vol. 4, 159-169, 2008.
doi:10.2528/PIERB08011404

4. Meng, H. F. and W.-B. Dou, "Fast analysis of electrically large radome in millimeter wave band with fast multipole acceleration," Progress In Electromagnetics Research, Vol. 120, 371-385, 2011.

5. Xiao, K., S. L. Chai, and L.-W. Li, "Comparisons of coupled VSIE and non-coupled VSIE formulations," Journal of Electromagnetic Waves and Applications, Vol. 25, No. 10, 1341-1351, 2011.

6. Amin, A. M. and R. L. Sierakowski, "Effect of thermomechanical coupling on the response of elastic solids," AIAA Journal, Vol. 28, No. 7, 1319-1322, 1990.
doi:10.2514/3.25215

7. Chen, F., Q. Shen, and L. Zhang, "Electromagnetic optimal design and preparation of broadband ceramic radome material with graded porous structure," Progress In Electromagnetics Research, Vol. 105, 445-461, 2010.
doi:10.2528/PIER10012005

8. Karim, M. N. A., M. K. A. Rahim, H. A. Majid, O. B. Ayop, M. Abu, and F. Zubir, "Log periodic fractal Koch antenna for UHF band applications," Progress In Electromagnetics Research, Vol. 100, 201-218, 2010.
doi:10.2528/PIER09110512

9. Xu, H.-Y., H. Zhang, K. Lu, and X.-F. Zeng, "A holly-leaf-shaped monopole antenna with low RCS for UWB application," Progress In Electromagnetics Research, Vol. 117, 35-50, 2011.

10. Hong, T., M.-Z. Song, and Y. Liu, "RF directional modulation technique using a switched antenna array for communication and direction-finding applications," Progress In Electromagnetics Research, Vol. 120, 195-213, 2011.

11. Zhu, F., S.-C. Gao, A. T. S. Ho, T. W. C. Brown, J. Li, and J.-D. Xu, "Low-profile directional ultra-wideband antenna for see-through-wall imaging applications," Progress In Electromagnetics Research, Vol. 121, 121-139, 2011.
doi:10.2528/PIER11080907

12. Koetje, E. L., F. H. Simpson, and J. F. Schorsch, Broadband and high temperature radome apparatus, US Pat., 4677443, Jun. 30, 1987.

13. Mackenzie, S. B., Radome wall design having broadband and mm-wave characteristics, US Pat., 5408244, Apr. 18, 1995.

14. Mackenzie, S. B. and D. W. Stressing, W-band and X-band radome wall, US Pat., 6028565, Feb. 22, 2000.

15. Niino, M. and S. Maeda, "Recent development status of functionally gradient materials," ISIJ International, Vol. 30, No. 9, 699-703, 1990.
doi:10.2355/isijinternational.30.699

16. Javaheri, R. and M. R. Eslami, "Thermal buckling of functionally graded plates," AIAA Journal, Vol. 40, No. 1, 162-169, 2002.
doi:10.2514/2.1626

17. Vel, S. S. and R. C. Batra, "Exact solution for thermoelastic deformations of functionally graded thick rectangular plates," AIAA Journal, Vol. 40, No. 7, 1421-1433, 2002.
doi:10.2514/2.1805

18. Kong, J. A., Electromagnetic Wave Theory, John Wiley & Sons, Inc., New York, 1986, Royal Society, London, 1904.

19. Garnett, J. C. M., "Colors in metal glasses and in metallic films," Philosophical Transactions of the Royal Society of London, Series A, Mathematical, Physical & Engineering Sciences, Vol. 203, No. 359-371.

20. Huang, X., F. Peng, F. Yan, and H. Tang, "Research on the dielectric properties of composite made with Si3N4-SiO2," Journal of Wuhan University of Technology, Vol. 28, No. 12, 21-23, 2006.

21. Zhou, Y., Science of Ceramic Material, Harbin Institute of Technology Press, Harbin, China, 1995.

22. Kuriyama, M., Y. Inomata, T. Kujima, and Y. Hasegawa, "Thermal conductivity of hot-pressed Si3N4 by the laser flash method," American Ceramic Society Bulletin, Vol. 57, No. 12, 1119-1122, 1978.

23. Miao, X., X. Zhang, B. Wan, J. Han, and S. Du, "Research on thermoelastic problems computation methods of FGM," Journal of Functional Materials, Vol. 30, No. 2, 122-125, 1999.

24. Kingery, W. D., H. H. Bowen, and D. R. Uhlmann, Introduction to Ceramics, 2nd Ed., Wiley, New York, 1976.

25. Kondo, R., Porous Materials, Gihodo, Tokyo, Japan, 1973.

26. Coble, R. L. and W. D. Kingery, "Effect of porosity on physical properties of sintered alumina," Journal of the American Ceramic Society, Vol. 39, No. 11, 377-385, 1956.
doi:10.1111/j.1151-2916.1956.tb15608.x

27. Huseby, I. C., G. A. Slack, and R. H. Arendt, "Thermal expansion of CdAl2O4, β-Si3N4 and other phenacite-type compounds," Bulletin of the American Ceramic Society, Vol. 60, No. 9, 919-920, 1981.

28. Bruls, R. J., H. T. Hintzen, G. de With, and R. Metselaar, "The temperature dependence of the Young's modulus of MgSiN2, AlN and Si3N4," Journal of the European Ceramic Society, Vol. 21, No. 3, 263-268, 2001.
doi:10.1016/S0955-2219(00)00210-7

29. Tomeno, I. and High temperature elastic moduli of Si3N4 ceramics, Japanese Journal of Applied Physics, Vol. 20, No. 9, 1751-1752, 1981.
doi:10.1143/JJAP.20.1751

30. Shao, Y., D. Jia, and Y. Zhou, "Effect of porosity on mechanical and dielectric properties of 20% BN/Si3N4 composite porous ceramics ," Rare Metal Materials and Engineering, Vol. 38, No. 2, 479-482, 2009.

31. Liu, H., Mechanics of Materials, Higher Education Press, Beijing, China, 2007.