Vol. 140
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-06-04
Optimization for Brain Activity Monitoring with Near Infrared Light in a Four-Layered Model of the Human Head
By
Progress In Electromagnetics Research, Vol. 140, 277-295, 2013
Abstract
We describe a four-layered model for near infrared light propagation in a human head based on the Monte Carlo method. With the use of three-dimensional voxel-based media discretization, photon migration in the brain is analyzed by both the time-of-flight measurement and the spatial sensitivity profile. In the measurement of brain activity, the selection of light wavelength and the distance between the source and the detector have a great influence on the detected signal. In this study, we compare the detected signals from the detectors with different source-detector spacing at wavelengths of 690 nm, 800 nm and 1300 nm, and find that in our model, the wavelength of 1300 nm is more appropriate for the measurement of brain activity because the signals at 1300 nm get better detection sensitivity and spatial resolution. Source-detector spacing is also optimized.
Citation
Zefei Guo, Fuhong Cai, and Sailing He, "Optimization for Brain Activity Monitoring with Near Infrared Light in a Four-Layered Model of the Human Head," Progress In Electromagnetics Research, Vol. 140, 277-295, 2013.
doi:10.2528/PIER13040203
References

1. Jobsis, F. F., et al. "Non invasive, infrared monitoring of cerebral and myocardial oxygen su±ciency and circulatory parameters," Science, Vol. 198, No. 4323, 1264-1267, 1977.
doi:10.1126/science.929199

2. Okada, E., et al. "Theoretical and experimental investigation of near-infrared light propagation in a model of the adult head," Applied Optics, Vol. 36, No. 1, 21-31, 1997.
doi:10.1364/AO.36.000021

3. Boas, D. A., J. P. Culver, J. J. Stott, and A. K. Dunn, "Three dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head," Opt. Exp., Vol. 10, No. 3, 159-170, 2002.
doi:10.1364/OE.10.000159

4. Fukui, Y., Y. Ajichi, and E. Okada, "Monte Carlo prediction of near-infrared light propagation in realistic adult and neonatal head models," Applied Optics, Vol. 42, No. 16, 2881-2887, 2003.
doi:10.1364/AO.42.002881

5. Villringer, A. and B. Chance, "Non-invasive optical spectroscopy and imaging of human brain function," Trends Neurosci, Vol. 20, No. 10, 435-442, 1997.
doi:10.1016/S0166-2236(97)01132-6

6. Deply, D. T., M. Cope, et al. "Estimation of optical pathlength through tissue from direct time of flight measurement," Phys. Med. Biol., Vol. 33, 1433-1422, 1988.

7. Bashkatov, A. N., E. A. Genina, et al. "Optical properties of human cranial bone in the spectral range from 800 to 2000 nm," Proc. of SPIE, Vol. 6163, No. 616310, 1-11, 2005..

8. Yaroslavsky, A. N., P. C. Schulze, and I. V. Yaroslavsky, "Optical properties of selected native and coagulated human brain tissues in vitro in the visible and near infrared spectral range," Phys. Med. Biol., Vol. 47, 2059-2073, 2002.
doi:10.1088/0031-9155/47/12/305

9. Custo, A., W. M. Wells III, and A. H. Barnett, "Effective scattering coefficient of the cerebral spinal °uid in adult head models for diffuse optical imaging," Applied Optics, Vol. 45, No. 19, 4747-4755, 2008.
doi:10.1364/AO.45.004747

10. Genina, E. A., A. N. Bashkatov, and V. V. Tuchin, "Optical clearing of cranial bone," Advanced in Optical Technologies, Vol. 2008, No. 10, 2008.

11. Wilson, B. C. and G. Adam, "A Monte Carlo model for the absorption and flux distributions of light in tissue," Med. Phys., Vol. 10, No. 6, 824-830, 1983.
doi:10.1118/1.595361

12. Wang, L., S. Jaques, and L. Zheng, "MCML-Monte Carlo modeling of light transport in multi-layered tissues," Comput. Meth. Prog. Biol., Vol. 47, 131-146, 1995.
doi:10.1016/0169-2607(95)01640-F

13. Dai, Y., W. Liu, and X. B. Xu, "A monte carlo mpsted analysis of scattering from cylinders buried below a random periodic rough surface," Progress In Electromagnetics Research B, Vol. 47, 179-202, 2013.

14. Paez, E., M. A. Azpurua, C. Tremola, and R. C. Callarotti, "Uncertainty estimation in complex permittivity measurements by shielded dielectric resonator technique using the monte carlo method," Progress In Electromagnetics Research B, Vol. 41, 101-119, 2012.

15. Gargama, H., S. K. Chaturvedi, and A. K. Thakur, "On the Design and reliability analysis of electromagnetic absorbes using real-coded genetic algorithm and monte carlo simulation ," Progress In Electromagnetics Research B, Vol. 43, 169-187, 2012.

16. Hiraoka, M., M. Firbank, and M. Essenpreis, "A monte carlo investigation of optical pathlength in inhomogeneous tissue and its application to near-infrared spectroscopy," Phys. Med. Biol., Vol. 38, 1859-1876, 1993.
doi:10.1088/0031-9155/38/12/011

17. Fang, Q. and D. A. Boas, "Monte Carlo simulation of photon migration in 3Dturbid media accelerated by graphics processing units," Opt. Exp., Vol. 17, No. 22, 20178-20190, 2009.
doi:10.1364/OE.17.020178

18. Okada, E., M. Firbank, and D. T. Deply, "The effect of overlying tissue on the spatial sensitivity profile of near-infrared spectroscopy," Phys. Med. Biol., Vol. 40, 2093-2108, 1995.
doi:10.1088/0031-9155/40/12/007

19. Mcgreevy, R. L. and L. Pusztai, "Reverse Monte Carlo simulation: A new technique for the determination of disordered structures," Molecular Simulation, Vol. 1, 359-367, 1988.
doi:10.1080/08927028808080958

20. Aslin, R. N. and J. Mehler, "Near-infrared spectroscopy for functional studies of brain activity in human infants: Promise, prospects, and challenges," Journal of Biomedical Optics, Vol. 10, No. 1, 011009, 2005.
doi:10.1117/1.1854672

21. Hadfield, R. H., "Single-photon detectors for optical quantum information applications," Nature Phtonics, Vol. 3, 696-705, 2009.
doi:10.1038/nphoton.2009.230

22. Schmidt, F. E., Development of a time-resolved optical tomography system for neonatal brain imaging, Ph.D. thesis, 163-64, University of London, 1999.

23. Song, Y. W., S. Y. Set, and S. Yamashita, "1300-nm pulsed fiber lasers mode-locked by purified carbon nanotubes," IEEE Photonics Technology Letters, Vol. 17, No. 8, 1623-1625, 2005.
doi:10.1109/LPT.2005.850883

24. Horton, N. G., K. Wang, and C. Xu, "In vivo three-photon microscopy of subcortical structures within an intact mouse brain," Nature Photonics, Vol. 7, 205-209, 2013.
doi:10.1038/nphoton.2012.336