Vol. 140
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-07-05
A Unified Fast Solution for the Single/Interferometer/Stereo SAR Geolocation Equation Based on the Rdpc Model
By
Progress In Electromagnetics Research, Vol. 140, 813-831, 2013
Abstract
The model based on range and Doppler equations (RD model) is the most precise model for SAR geolocation, and therefore SAR geolocation based on this RD model has become more and more popular. Unfortunately, the RD method requires iterative solution, in most case, which is time-consuming and prone to poor optimization due to observation errors of parameters. In face of the huge mass of measured data from global SAR measurements, how to improve processing speed while maintaining geolocation accuracy is an important problem. This paper examines how to solve the RD geolocation equations for single, interferometric, and stereo SAR. First, the RD geolocation equations for the three kinds of systems are abstracted into a unified equation form. Second, it is determined that the RD geolocation equation can be approximated as a mapping relationship using polynomials. Then a fast solution method for the unified geolocation equation is proposed based on the Range Doppler Polynomial Coefficient Model (RDPC). Third, the accuracy loss of the RDPC model is analyzed, and the precision differences among the three kinds of system are compared. Finally, several groups of TerraSAR-X measured data for the three modes are processed using the fast algorithm. The results show that the fast algorithm greatly reduces the amount of calculation while the geolocation accuracy loss is small. Performance evaluation demonstrates that the proposed method is efficient and correct.
Citation
Haifeng Huang, and Qingsong Wang, "A Unified Fast Solution for the Single/Interferometer/Stereo SAR Geolocation Equation Based on the Rdpc Model," Progress In Electromagnetics Research, Vol. 140, 813-831, 2013.
doi:10.2528/PIER13050106
References

1. Li, S., H. P. Xu, and L. Q. Zhang, "An advanced DSS-SAR InSAR terrain height estimation approach based on baseline decoupling," Progress In Electromagnetics Research, Vol. 119, 207-224, 2011.
doi:10.2528/PIER11042301

2. An, D.-X., Z.-M. Zhou, X.-T. Huang, and T. Jin, "A novel imaging approach for high resolution squinted spotlight SAR based on the deramping-based technique and azimuth NLCS principle ," Progress In Electromagnetics Research, Vol. 123, 485-508, 2012.
doi:10.2528/PIER11112110

3. Chen, J., S. Quegan, and X. J. Yin, "Calibration of spaceborne linearly polarized low frequency SAR using polarimetric selective radar calibrators," Progress In Electromagnetics Research, Vol. 114, 89-111, 2011.

4. Leberl, F., Radargrammetry for image interpretation, ITC Technical Report, 1978.

5. Krieger, G., A. Moreira, H. Fiedler, et al. "TanDEM-X: A satellite formation for high-resolution SAR interferometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 45, 3317-3341, 2007.
doi:10.1109/TGRS.2007.900693

6. Chen, P. H. and I. J. Dowman, "A weighted least square solution for space intersection of spaceborne stereo SAR data," IEEE Transactions on Geoscience and Remote Sensing, Vol. 39, 233-240, 2001.
doi:10.1109/36.905231

7. Collino, F., F. Millot, and S. Pernet, "Boundary-integral methods for iterative solution of scattering problems with variable impedance surface condition," Progress In Electromagnetics Research, Vol. 80, 1-28, 2008.
doi:10.2528/PIER07103105

8. Ma, L., Z. F. Li, and G. S. Liao, "System error analysis and calibration methods for multi-channel SAR," Progress In Electromagnetics Research, Vol. 112, 309-327, 2011.

9. Zhang, Y.-J., H.-F. Huang, Y.-S. Zhang, and D.-N. Liang, "InSAR error modeling and error estimation method," Acta Electronica Sinica, Vol. 39, No. 6, 2011.

10. Krieger, G., M. Zink, H. Fiedler, et al. "The TanDEM-X mission: Overview and status," IEEE Radar Conference, 372-376, 2009.

11. Leberl, F., Radargrammetric Image Processing, Artech House, Norwood, Massachusetts, 1990.

12. Bolter, R. and F. Leberl, "Fusion of multiple view interferometric and slant range SAR data for building reconstruction," SAR Image Analysis, Modelling, and Techniques III, SPIE Proceedings Series, Vol. 4173, 241-250, F. Posa and L. Guerriero, Eds., Barcelona, Spain, Sep. 25-27, 2000.

13. Konecny, G. and W. Schuhu, "Reliability of radar image data," 16th ISPRS Congress, B9, Tokyo, 1988.

14. Fraser, C. S. and H. B. Hanley, "Bias compensation in rational functions for Ikonos satellite imagery," Photogrammetric Engineering & Remote Sensing, Vol. 69, No. 1, 53-57, 2003.

15. Zhang, G., W. B. Fei, Z. Li, X. Y. Zhu, and D. R. Li, "Evaluation of the RPC model for spaceborne SAR imagery," Photogrammetric Engineering & Remote Sensing, Vol. 76, 727-733, 2010.

16. Brown, W. E., "Applications of SEASAT SAR digitally correlated imagery for sea ice dynamics," Amer. Geophys. Union Spring Meeting, 25-29, 1981.

17. Curlander, J. C., "Location of spaceborne SAR imagery," IEEE Trans. on Geoscience and Remote Sensing, Vol. 20, No. 3, 359-364, 1982.
doi:10.1109/TGRS.1982.350455

18. Yuan, X., Introduce to the Spaceborne Synthetic Aperture Radar, National Defense Industry Press, Beijing, 2003 (in Chinese).

19. Li, F. K. and W. T. Johoson, "Ambiguities in spaceborne synthetic aperture radar systems," IEEE Transactions on Geoscience and Remote Sensing, Vol. 389, No. 396, 1983.

20. Roth, A., D. Kosmann, M. Matschke, et al. "Experiences in multi-sensorial SAR geocoding," IGARSS 1996, 27-31, 1996.

21. Liu, X. K., H. Ma, and W. Sun, "Study on the geolocation algorithm of space-borne SAR image," IWICPAS 2006, 270-280, 2006.

22. Raggam, H., K. Gutjahr, R. Perko, and M. Schardt, "Assessment of the stereo-radargrammetric mapping potential of TerraSAR-X multibeam spotlight data ," IEEE Transactions on Geoscience and Remote Sensing, Vol. 48, No. 2, 971-977, 2010.
doi:10.1109/TGRS.2009.2037315

23. Rodriguez, E. and M. J. Martin, "Theory and design of interferometric synthetic aperture radar," IEE Proc., Vol. 139, No. 2, 147-159, 1992.
doi:10.1049/ip-d.1992.0021

24. Goblirsch, W., "The exact solution of imaging equations for crosstrack interferometers," Proceedings of the 1997 IEEE International Geoscience and Remote Sensing Symposium, Vol. 1, 439-441, Aug. 3, 1997.

25. Zheng, X., K. Wang, and X. Liu, "A new DEM reconstruction method based on an accurate flattening algorithm in interferometric SAR," IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, 1093-1096, Mar. 31, 2008.

26. Giovanni, N., "Exact closed-form geolocation for SAR interferometry," IEEE Transactions on Geoscience and Remote Sensing, Vol. 40, 220-222, 2002.

27. Eugenio, S., "A simple and exact solution for the interferometric and stereo SAR geolocation problem," IEEE Transactions on Geoscience and Remote Sensing, Vol. 42, 1625-1634, 2004.

28. Rossi, C., M. Eineder, T. Fritz, and H. Breit, "TanDEM-X mission: Raw DEM generation," EUSAR 2010, 146-149, 2010.

29. Schwabisch, M., "A fast and efficient technique for SAR interferogram geocoding," Proceedings of the 1998 IEEE International Geoscience and Remote Sensing Symposium, 1100-1102, 1998.

30. Eineder, M., "E±cient simulation of SAR interferograms of large areas and of rugged terrain," IEEE Transactions on Geoscience and Remote Sensing, Vol. 41, No. 6, Part 1, 1415-1427, 2003.