Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 142 > pp. 625-638


By P. Singh, S. Kabiri Ameri, L. Chao, M. N. Afsar, and S. Sonkusale

Full Article PDF (571 KB)

Metamaterial based electromagnetic wave absorbers provide perfect absorption only over a narrow bandwidth. In this paper, broadband response is achieved through embedding of one resonator inside another in each unit cell of the metamaterial absorber lattice. These two resonators are oriented in the same direction to achieve reduced coupling between them realizing two absorption frequencies close to each other in order to broaden the effective bandwidth. Paper presents such an absorber at 77 GHz with a bandwidth of 8 GHz with the peak absorption of greater than 98%. The absorber is fabricated on 125 μm thin and flexible polyimide substrate by patterning gold thin film in the shape of two split ring resonators as the metamaterial unit cell. The bandwidth is enhanced by more than a factor of two compared to what could be achieved from a metamaterial with single resonator structure.

P. Singh, S. Kabiri Ameri, L. Chao, M. N. Afsar, and S. Sonkusale, "Broadband Millimeterwave Metamaterial Absorber Based on Embedding of Dual Resonators," Progress In Electromagnetics Research, Vol. 142, 625-638, 2013.

1. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402-1-207402-4, 2008.

2. Noor, A. and Z. Hu, "Metamaterial dual polarised resistive hilbert curve array radar absorber," IET Microw. Antennas Propag., Vol. 4, 667-673, 2010.

1. Takimoto, Y., "Considerations on millimeter-wave indoor LAN," Topical Symposium on Millimeter Waves, 111-114, 1997.

4. Maier, T. and H. Bruckl, "Wavelength-tunable microbolometers with metamaterial absorbers," Optics Letters, Vol. 34, 3012-3014, 2009.

5. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broad-band polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature Communications, Vol. 2, No. 517.

6. Takase, Y., O. Hashimoto, K. Matsumoto, and T. Kumada, "Suppression of electromagnetic radiation noise from wireless modules in the millimeter-wave band by means of alumina containing carbon black," Electronics and Communications in Japan, Vol. 93, 25-33, 2010.

7. Iijima, Y., Y. Hoqjou, and R. Sato, "Millimeter wave absorber using M-type hexagonal ferrite," IEEE International Symposium on Electromagnetic Compatibility, Vol. 2, 547-549, 2000.

8. Korolev, K. A., J. S. McCloy, and M. N. Afsar, "Ferromagnetic resonance of micro- and nano-sized hexagonal ferrite powders at millimeter waves," J. Appl. Phys., Vol. 111, 07E113-1-07E113-3, 2012.

9. Wen, Q.-Y., H.-W. Zhang, Y.-S. Xie, Q.-H. Yang, and Y.-L. Liu, "Dual band terahertz metamaterial absorber: Design, fabrication, and characterization," Appl. Phys. Lett., Vol. 95, 241111-1-241111-3, 2009.

10. Tao, H., C. M. Bingham, D. Pilon, K. Fan, A. C. Strikwerda, D. Shrekenhamer, W. J. Padilla, X. Zhang, and R. D. Averitt, "A dual band terahertz metamaterial absorber," J. Phys. D: Appl. Phys., Vol. 43, 225102-1-225102-5, 2010.

11. Mason, J. A., S. Smith, and D. Wasserman, "Strong absorption and selective thermal emission from a midinfrared metamaterial," Appl. Phys. Lett., Vol. 98, 241105-1-241105-3, 2011.

12. Hao, J., J. Wang, X. Liu, W. J. Padilla, L. Zhou, and M. Qiu, "High performance optical absorber based on a plasmonic metamaterial," Appl. Phys. Lett., Vol. 96, 251104-1-251104-3, 2010.

13. Soh, T., , A. Kondo, M. Toyota, and O. Hashimoto, "A basic study of millimeter-wave absorber for two frequency bands using transparent resistive films," IEEE International Symposium on Electromagnetic Compatibility, Vol. 1, 149-154, 2003.

14. Singh, P. K., K. A. Korolev, M. N. Afsar, and S. Sonkusale, "Single and dual band 77/95/110 GHz metamaterial absorbers on flexible polyimide substrate," Appl. Phys. Lett., Vol. 99, 264101-1-264101-4, 2011.

15. Gu, S., J. P. Barrett, T. H. Hand, B.-I. Popa, and S. A. Cummer, "A broadband low-reflection metamaterial absorber," J. Appl. Phys., Vol. 108, 064913-2-064913-6, 2010.

16. Sun, L. K., H. F. Cheng, Y. J. Zhou, and J. Wang, "Broadband metamaterial absorber based on coupling resistive frequency selective surface," Optics Express, Vol. 20, 4675-4678, 2012.

17. Wakatsuchi, H., S. Greedy, C. Christopoulos, and J. Paul, "Customised broadband metamaterial absorbers for arbitrary polarisation," Optics Express, Vol. 18, 22187-22198, 2010.

18. Ding, F., Y. Cui, X. Ge, Y. Jin, and S. He, "Ultra-broadband microwave metamaterial absorber," Appl. Phys. Lett., Vol. 100, 1-4, 2012.

19. Hendrickson, J., , J. Guo, B. Zhang, W. Buchwald, and R. Soref, "Wideband perfect light absorber at midwave infrared using multiplexed metal structures," Optics Letters, Vol. 37, 371-373, 2012.

20. Bouchon, P., C. Koechlin, F. Pardo, R. Haidar, and J.-L. Pelouard, "Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas," Optics Letters, Vol. 37, 1038-1040, 2012.

21. Koechlin, C., P. Bouchon, F. Pardo, J.-L. Pelouard, and R. Haidar, "Analytical description of subwavelength plasmonic MIM resonators and of their combination," Optics Express, Vol. 21, 7025-7032, 2013.

22. Guo, H., N. Liu, L. Fu, T. P. Meyrath, T. Zentgraf, H. Schweizer, and H. Giessen, "Resonance hybridization in double split-ring resonator metamaterials," Optics Express, Vol. 19, 12095-12101, 2007.

23. Aydin, K., I. M. Pryce, and H. A. Atwater, "Symmetry breaking and strong coupling in planar optical metamaterials," Optics Express, Vol. 18, 13407-13417, 2010.

© Copyright 2014 EMW Publishing. All Rights Reserved