Vol. 142
Latest Volume
All Volumes
PIER 185 [2026] PIER 184 [2025] PIER 183 [2025] PIER 182 [2025] PIER 181 [2024] PIER 180 [2024] PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2013-10-09
Polarimetric SAR Model for Soil Moisture Estimation Over Vineyards at C-Band
By
Progress In Electromagnetics Research, Vol. 142, 639-665, 2013
Abstract
In this paper we propose a two-component polarimetric model for soil moisture estimation on vineyards suited for C-band radar data. According to a polarimetric analysis carried out here, this scenario is made up of one dominant direct return from the soil and a multiple scattering component accounting for disturbing and nonmodeled signal fluctuations from soil and short vegetation. We propose a combined X-Bragg/Fresnel approach to characterize the polarized direct response from soil. A validation of this polarimetric model has been performed in terms of its consistency with respect to the available data both from RADARSAT-2 and from indoor measurements. High inversion rates are reported for different phenological stages of vines, and the model gives a consistent interpretation of the data as long as the volume component power remains about or below 50% of the surface contribution power. However, the scarcity of soil moisture measurements in this study prevents the validation of the algorithm in terms of the accuracy of soil moisture retrieval and an extensive campaign is required to fully demonstrate the validity of the model. Different sources of mismatches between the model and the data have been also discussed and analyzed.
Citation
Josep David Ballester-Berman, Fernando Vicente-Guijalba, and Juan Manuel Lopez-Sanchez, "Polarimetric SAR Model for Soil Moisture Estimation Over Vineyards at C-Band," Progress In Electromagnetics Research, Vol. 142, 639-665, 2013.
doi:10.2528/PIER13071702
References

1. Oh, Y., K. Sarabandi, and F. T. Ulaby, "An empirical model and an inversion technique for radar scattering from bare soil surfaces," IEEE Trans. on Geosci. Remote Sensing, Vol. 30, 370-381, 1992.
doi:10.1109/36.134086        Google Scholar

2. Dubois, P. C., J. van Zyl, and T. Engman, "Measuring soil moisture with imaging radars," IEEE Trans. on Geosci. Remote Sensing, Vol. 33, 915-926, 1995.
doi:10.1109/36.406677        Google Scholar

3. Loew, A., R. Ludwig, and W. Mauser, "Derivation of surface soil moisture from ENVISAT ASAR wide swath and image mode data in agricultural areas," IEEE Trans. on Geosci. Remote Sensing, Vol. 44, No. 4, 889-899, 2006.
doi:10.1109/TGRS.2005.863858        Google Scholar

4. Song, K., X. Zhou, and Y. Fan, "Retrieval of soil moisture content from microwave backscattering using a modified IEM model," Progress In Electromagnetics Research B, Vol. 26, 383-399, 2010.
doi:10.2528/PIERB10072905        Google Scholar

5. Hajnsek, I., E. Pottier, and S. R. Cloude, "Inversion of surface parameters from polarimetric SAR," IEEE Trans. on Geosci. Remote Sensing, Vol. 41, No. 41, 727-744, Apr. 2003.
doi:10.1109/TGRS.2003.810702        Google Scholar

6. Prasad, R., R. Kumar, and D. Singh, "A radial basis function approach to retrieve soil moisture and crop variables from X-band scatterometer observations," Progress In Electromagnetics Research B, Vol. 12, 201-217, 2009.
doi:10.2528/PIERB08120703        Google Scholar

7. Singh, D., V. Srivastava, B. Pandey, and D. Bhimsaria, "Application of neural network with error correlation and time evolution for retrieval of soil moisture and other vegetation variables," Progress In Electromagnetics Research B, Vol. 15, 245-265, 2009.
doi:10.2528/PIERB09043003        Google Scholar

8. Oh, Y., S.-G. Kwon, and J.-H. Hwang, "Soil moisture detection algorithm at X-band," 3rd International Asia-Pacific Conference on Synthetic Aperture Radar, 1-4, 2011.        Google Scholar

9. Srivastava, H. S., P. Patel, Y. Sharma, and R. R. Navalgund, "Large-area soil moisture estimation using multi-incidence-angle RADARSAT-1 SAR data," IEEE Trans. on Geosci. Remote Sensing, Vol. 47, No. 8, 2528-2535, 2009.
doi:10.1109/TGRS.2009.2018448        Google Scholar

10. Gherboudj, I., R. Magagi, A. A. Berg, and B. Toth, "Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data," Remote Sensing of Environment, Vol. 115, No. 1, 33-33, 2011.
doi:10.1016/j.rse.2010.07.011        Google Scholar

11. Hajnsek, I., T. Jagdhuber, H. Schon, and K. P. Papathanassiou, "Potential of estimating soil moisture under vegetation cover by means of PolSAR," IEEE Trans. on Geosci. Remote Sensing, Vol. 47, No. 2, 442-454, 2009.
doi:10.1109/TGRS.2008.2009642        Google Scholar

12. Jagdhuber, T., I. Hajnsek, A. Bronstert, and K. P. Papathanassiou, "Soil moisture estimation under low vegetation cover using a multi-angular polarimetric decomposition," IEEE Trans. on Geosci. Remote Sensing, Vol. 51, No. 4, 2201-2214, 2012.
doi:10.1109/TGRS.2012.2209433        Google Scholar

13. Jagdhuber, T., I. Hajnsek, and K. P. Papathanassiou, "Polarimetric decompositions for soil moisture retrieval from vegetated soils in TERENO observatories," 6th POLInSAR Workshop Frascati, Jan. 2013.        Google Scholar

14. Martone, M., T. Jagdhuber, I. Hajnsek, and A. Iodice, "Modified scattering decomposition for soil moisture estimation from polarimetric X-band data," IEEE GOLD Remote Sensing Conference, 2010.        Google Scholar

15. Ballester-Berman, J. D., I. Garmendia-Lopez, J. M. Lopez-Sanchez, and V. J. Mangas-Martin, "Analysis of the polarimetric response of vineyards at C-band," Canadian Journal of Remote Sensing, Vol. 38, No. 3, 223-239, 2012.
doi:10.5589/m12-016        Google Scholar

16. Freeman, A. and S. L. Durden, "A three component scattering model to describe polarimetric SAR data," SPIE, Radar Polarimetry, Vol. 1748, 213-224, 1992.        Google Scholar

17. Freeman, A. and S. L. Durden, "A three-component scattering model for polarimetric SAR data," IEEE Trans. on Geosci. Remote Sensing, Vol. 36, No. 3, 963-973, May 1998.
doi:10.1109/36.673687        Google Scholar

18. Cloude, S. R., Polarisation: Applications in Remote Sensing, Oxford University Press, 2009.
doi:10.1093/acprof:oso/9780199569731.001.0001

19. Yamaguchi, Y., T. Moriyama, M. Ishido, and H. Yamada, "Four-component scattering model for polarimetric SAR image decomposition," IEEE Trans. on Geosci. Remote Sensing, Vol. 43, No. 8, 1699-1706, 2005.
doi:10.1109/TGRS.2005.852084        Google Scholar

20. Van Zyl, J. J., M. Arii, and Y. Kim, "Requirements for modelbased polarimetric decompositions," Proceedings of EUSAR Friedrichshafen, Jun. 2008.        Google Scholar

21. Van Zyl, J. J., M. Arii, and Y. Kim, "Model-based decomposition of polarimetric SAR covariance matrices constrained for non-negative eigenvalues," IEEE Trans. on Geosci. Remote Sensing, Vol. 49, No. 9, 3452-3459, 2011.
doi:10.1109/TGRS.2011.2128325        Google Scholar

22. An, W., Y. Cui, and J. Yang, "Three-component model-based decomposition for polarimetric SAR data," IEEE Trans. on Geosci. Remote Sensing, Vol. 48, No. 6, 2732-2739, 2010.
doi:10.1109/TGRS.2010.2041242        Google Scholar

23. Huynen, J. R., "Phenomenological theory of radar targets," Ph.D. Thesis, Technical University, Delft, 1970.        Google Scholar

24. Xu, F. and Y. Q. Jin, "Deorientation theory of polarimetric scattering targets and application to terrain surface classification," IEEE Trans. on Geosci. Remote Sensing, Vol. 43, No. 10, 2351-2364, 2005.
doi:10.1109/TGRS.2005.855064        Google Scholar

25. Lee, J.-S., D. L. Schuler, and T. L. Ainsworth, "Polarimetric SAR data compensation for terrain azimuth slope variation," IEEE Trans. on Geosci. Remote Sensing, Vol. 38, No. 5, 2153-2163, 2000.
doi:10.1109/36.868874        Google Scholar

26. Antropov, O., Y. Rauste, and T. Hame, "Volume scattering modeling in PolSAR decompositions: Study of ALOS PALSAR data over boreal forest," IEEE Trans. on Geosci. Remote Sensing, Vol. 49, No. 10, 3838-3848, 2011.
doi:10.1109/TGRS.2011.2138146        Google Scholar

27. Freeman, A., "Fitting a two-component scattering model to polarimetric SAR data from forests," IEEE Trans. on Geosci. Remote Sensing, Vol. 45, No. 8, 2583-2592, 2007.
doi:10.1109/TGRS.2007.897929        Google Scholar

28. Arii, M., J. J. van Zyl, and Y. Kim, "A general characterization for polarimetric scattering from vegetation canopies," IEEE Trans. on Geosci. Remote Sensing, Vol. 48, No. 9, 3349-3357, 2010.
doi:10.1109/TGRS.2010.2046331        Google Scholar

29. Arii, M., J. J. van Zyl, and Y. Kim, "Adaptive model-based decomposition of polarimetric SAR covariance matrices," IEEE Trans. on Geosci. Remote Sensing, Vol. 49, No. 3, 1104-1113, 2011.
doi:10.1109/TGRS.2010.2076285        Google Scholar

30. Chen, S.-W., X.-S. Wang, Y.-Z. Li, and M. Sato, "Adaptive modelbased polarimetric decomposition using PolInSAR coherence," IEEE Trans. on Geosci. Remote Sensing, No. 99, 1, 2013.        Google Scholar

31. Cui, Y., Y. Yamaguchi, J. Yang, H. Kobayashi, S.-E. Park, and G. Singh, "On complete model-based decomposition of polarimetric SAR coherence matrix data," polarimetric SAR coherence matrix data Geosci. Remote Sensing, 2013.
doi:10.1109/TGRS.2013.2257603        Google Scholar

32. Lee, J.-S., T. L. Ainsworth, and Y.Wang, "Generalized polarimet-ric model-based decompositions using incoherent scattering modric model-based decompositions using incoherent scattering models," IEEE Trans. on Geosci. Remote Sensing, No. 99, 1-18, 2013.
doi:10.1109/TGRS.2013.2262051        Google Scholar

33. Allain, S., "Caracterisation d'un Sol nu µa partir de donnees SAR Polarimetriques: Etude Multi-frequentielle et Multi-resolutions," Ph.D. Thesis, University of Rennes, 2003.        Google Scholar

34. Lopez-Sanchez, J. M., S. R. Cloude, and J. D. Ballester-Berman, "Rice phenology monitoring by means of SAR polarimetry at X band," IEEE Trans. on Geosci. Remote Sensing, Vol. 50, No. 7, 2695-2709, 2012.
doi:10.1109/TGRS.2011.2176740        Google Scholar

35. Cloude, S. R. and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," IEEE Trans. on Geosci. Remote Sensing, Vol. 35, No. 1, 68-78, Jan. 1997.
doi:10.1109/36.551935        Google Scholar

36. Wang, Y., J. F. Paris, and F. W. Davis, "Inclusion of a simple multiple scattering model into a microwave canopy backscatter model," Remote Sensing of Environment, Vol. 63, No. 2, 101-111, 1998.
doi:10.1016/S0034-4257(97)00129-6        Google Scholar

37. Ulaby, F. T., R. K. Moore, and A. K. Fung, , Microwave Remote Sensing: From Theory to Applications, Vol. 3, Artech House, 1986.

38. Mattia, F., T. Le Toan, J.-C. Souyris, G. de Carolis, N. Floury, F. Posa, and G. Pasquariello, "The effect of surface roughness on multifrequency polarimetric SAR data," IEEE Trans. on Geosci. Remote Sensing, Vol. 35, 954-966, 1997.
doi:10.1109/36.602537        Google Scholar

39. Cloude, S. R. and K. P. Papathanassiou, "Surface roughness and polarimetric entropy," Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vol. 5, 2443-2445, Jun. 1999.        Google Scholar

40. Schuler, D. L., J.-S. Lee, D. Kasilingam, and G. Nesti, "Surface roughness and slope measurements using polarimetric SAR data," IEEE Trans. on Geosci. Remote Sensing, Vol. 40, 687-698, 40, 687{.        Google Scholar

41. Truong-Loi, M.-L., P. Dubois-Fernandez, A. Freeman, and E. Pottier, "The conformity coe±cient or how to explore the scattering behaviour from compact polarimetry mode," 2009 IEEE Radar Conference, 1-6, 2009.
doi:10.1109/RADAR.2009.4977048        Google Scholar

42. Lee, J. S. and T. L. Ainsworth, "The effect of orientation angle compensation on coherency matrix and polarimetric target decompositions," IEEE Trans. on Geosci. Remote Sensing, Vol. 49, No. 1, 53-64, 2011.
doi:10.1109/TGRS.2010.2048333        Google Scholar

43. Topp, G. C., J. L. Davis, and A. P. Annan, "Electromagnetic determination of soil water content: Measurements in coaxial transmission lines," Water Resources Research, Vol. 16, 574-582, 1980.
doi:10.1029/WR016i003p00574        Google Scholar

44. Baggiolini, M., "Les stades repµeres dans le developpement annuel de la vigne et leur utilisation pratique," Revue Romande d'Agriculture et d'Arboriculture, Vol. 8, 4-6, 1952.        Google Scholar

45. Liang, D., P. Xu, L. Tsang, Z. Gui, and K.-S. Chen, "Electromagnetic scattering by rough surfaces with large heights and slopes with applications to microwave remote sensing of rough surface over layered media," Progress In Electromagnetics Research, Vol. 95, 199{-218, 2009.
doi:10.2528/PIER09071413        Google Scholar

46. Treuhaft, R. N., S. T. Lowe, and E. Cardellach, "Formulating a vector wave expression for polarimetric GNSS surface scattering," Progress In Electromagnetics Research B, Vol. 33, 257-276, 2011.
doi:10.2528/PIERB11042910        Google Scholar

47. Neumann, M., L. Ferro-Famil, and A. Reigber, "Improvement of vegetation parameter retrieval from polarimetric SAR interferometry using a simple polarimetric scattering model," 4th POLinSAR Workshop, Jan. 2009.        Google Scholar

48. Ballester-Berman, J. D. and J. M. Lopez-Sanchez, "Applying the Freeman-Durden decomposition concept to polarimetric SAR interferometry," IEEE Trans. on Geosci. Remote Sensing, Vol. 48, No. 1, 466-479, 2010.
doi:10.1109/TGRS.2009.2024304        Google Scholar

49. Xing, S., D. Dai, Y. Li, and X. Wang, "Polarimetric SAR tomography using l_{2,1} mixed norm sparse reconstruction method," Progress In Electromagnetics Research, Vol. 130, 105-130, 2012.        Google Scholar