PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 142 > pp. 639-665

POLARIMETRIC SAR MODEL FOR SOIL MOISTURE ESTIMATION OVER VINEYARDS AT C-BAND

By J. D. Ballester-Berman, F. Vicente-Guijalba, and J. M. Lopez-Sanchez

Full Article PDF (555 KB)

Abstract:
In this paper we propose a two-component polarimetric model for soil moisture estimation on vineyards suited for C-band radar data. According to a polarimetric analysis carried out here, this scenario is made up of one dominant direct return from the soil and a multiple scattering component accounting for disturbing and nonmodeled signal fluctuations from soil and short vegetation. We propose a combined X-Bragg/Fresnel approach to characterize the polarized direct response from soil. A validation of this polarimetric model has been performed in terms of its consistency with respect to the available data both from RADARSAT-2 and from indoor measurements. High inversion rates are reported for different phenological stages of vines, and the model gives a consistent interpretation of the data as long as the volume component power remains about or below 50% of the surface contribution power. However, the scarcity of soil moisture measurements in this study prevents the validation of the algorithm in terms of the accuracy of soil moisture retrieval and an extensive campaign is required to fully demonstrate the validity of the model. Different sources of mismatches between the model and the data have been also discussed and analyzed.

Citation:
J. D. Ballester-Berman, F. Vicente-Guijalba, and J. M. Lopez-Sanchez, "Polarimetric SAR Model for Soil Moisture Estimation Over Vineyards at C-Band," Progress In Electromagnetics Research, Vol. 142, 639-665, 2013.
doi:10.2528/PIER13071702
http://www.jpier.org/PIER/pier.php?paper=13071702

References:
1. Oh, Y., K. Sarabandi, and F. T. Ulaby, "An empirical model and an inversion technique for radar scattering from bare soil surfaces," IEEE Trans. on Geosci. Remote Sensing, Vol. 30, 370-381, 1992.
doi:10.1109/36.134086

2. Dubois, P. C., J. van Zyl, and T. Engman, "Measuring soil moisture with imaging radars," IEEE Trans. on Geosci. Remote Sensing, Vol. 33, 915-926, 1995.
doi:10.1109/36.406677

3. Loew, A., R. Ludwig, and W. Mauser, "Derivation of surface soil moisture from ENVISAT ASAR wide swath and image mode data in agricultural areas," IEEE Trans. on Geosci. Remote Sensing, Vol. 44, No. 4, 889-899, 2006.
doi:10.1109/TGRS.2005.863858

4. Song, K., X. Zhou, and Y. Fan, "Retrieval of soil moisture content from microwave backscattering using a modified IEM model," Progress In Electromagnetics Research B, Vol. 26, 383-399, 2010.
doi:10.2528/PIERB10072905

5. Hajnsek, I., E. Pottier, and S. R. Cloude, "Inversion of surface parameters from polarimetric SAR," IEEE Trans. on Geosci. Remote Sensing, Vol. 41, No. 41, 727-744, 2003.
doi:10.1109/TGRS.2003.810702

6. Prasad, R., R. Kumar, and D. Singh, "A radial basis function approach to retrieve soil moisture and crop variables from X-band scatterometer observations," Progress In Electromagnetics Research B, Vol. 12, 201-217, 2009.
doi:10.2528/PIERB08120703

7. Singh, D., V. Srivastava, B. Pandey, and D. Bhimsaria, "Application of neural network with error correlation and time evolution for retrieval of soil moisture and other vegetation variables," Progress In Electromagnetics Research B, Vol. 15, 245-265, 2009.
doi:10.2528/PIERB09043003

8. Oh, Y., S.-G. Kwon, and J.-H. Hwang, "Soil moisture detection algorithm at X-band," 3rd International Asia-Pacific Conference on Synthetic Aperture Radar, 1-4, 2011.

9. Srivastava, H. S., P. Patel, Y. Sharma, and R. R. Navalgund, "Large-area soil moisture estimation using multi-incidence-angle RADARSAT-1 SAR data," IEEE Trans. on Geosci. Remote Sensing, Vol. 47, No. 8, 2528-2535, 2009.
doi:10.1109/TGRS.2009.2018448

10. Gherboudj, I., R. Magagi, A. A. Berg, and B. Toth, "Soil moisture retrieval over agricultural fields from multi-polarized and multi-angular RADARSAT-2 SAR data," Remote Sensing of Environment, Vol. 115, No. 1, 33-33, 2011.
doi:10.1016/j.rse.2010.07.011

11. Hajnsek, I., T. Jagdhuber, H. Schon, and K. P. Papathanassiou, "Potential of estimating soil moisture under vegetation cover by means of PolSAR," IEEE Trans. on Geosci. Remote Sensing, Vol. 47, No. 2, 442-454, 2009.
doi:10.1109/TGRS.2008.2009642

12. Jagdhuber, T., I. Hajnsek, A. Bronstert, and K. P. Papathanassiou, "Soil moisture estimation under low vegetation cover using a multi-angular polarimetric decomposition," IEEE Trans. on Geosci. Remote Sensing, Vol. 51, No. 4, 2201-2214, 2012.
doi:10.1109/TGRS.2012.2209433

13. Jagdhuber, T., I. Hajnsek, and K. P. Papathanassiou, "Polarimetric decompositions for soil moisture retrieval from vegetated soils in TERENO observatories," 6th POLInSAR Workshop Frascati, 2013.

14. Martone, M., T. Jagdhuber, I. Hajnsek, and A. Iodice, "Modified scattering decomposition for soil moisture estimation from polarimetric X-band data," IEEE GOLD Remote Sensing Conference, 2010.

15. Ballester-Berman, J. D., I. Garmendia-Lopez, J. M. Lopez-Sanchez, and V. J. Mangas-Martin, "Analysis of the polarimetric response of vineyards at C-band," Canadian Journal of Remote Sensing, Vol. 38, No. 3, 223-239, 2012.
doi:10.5589/m12-016

16. Freeman, A. and S. L. Durden, "A three component scattering model to describe polarimetric SAR data," SPIE, Radar Polarimetry, Vol. 1748, 213-224, 1992.

17. Freeman, A. and S. L. Durden, "A three-component scattering model for polarimetric SAR data," IEEE Trans. on Geosci. Remote Sensing, Vol. 36, No. 3, 963-973, 1998.
doi:10.1109/36.673687

18. Cloude, S. R., Polarisation: Applications in Remote Sensing, Oxford University Press, 2009.
doi:10.1093/acprof:oso/9780199569731.001.0001

19. Yamaguchi, Y., T. Moriyama, M. Ishido, and H. Yamada, "Four-component scattering model for polarimetric SAR image decomposition," IEEE Trans. on Geosci. Remote Sensing, Vol. 43, No. 8, 1699-1706, 2005.
doi:10.1109/TGRS.2005.852084

20. Van Zyl, J. J., M. Arii, and Y. Kim, "Requirements for modelbased polarimetric decompositions," Proceedings of EUSAR Friedrichshafen, 2008.

21. Van Zyl, J. J., M. Arii, and Y. Kim, "Model-based decomposition of polarimetric SAR covariance matrices constrained for non-negative eigenvalues," IEEE Trans. on Geosci. Remote Sensing, Vol. 49, No. 9, 3452-3459, 2011.
doi:10.1109/TGRS.2011.2128325

22. An, W., Y. Cui, and J. Yang, "Three-component model-based decomposition for polarimetric SAR data," IEEE Trans. on Geosci. Remote Sensing, Vol. 48, No. 6, 2732-2739, 2010.
doi:10.1109/TGRS.2010.2041242

23. Huynen, J. R., "Phenomenological theory of radar targets," Ph.D. Thesis, Technical University, Delft, 1970.

24. Xu, F. and Y. Q. Jin, "Deorientation theory of polarimetric scattering targets and application to terrain surface classification," IEEE Trans. on Geosci. Remote Sensing, Vol. 43, No. 10, 2351-2364, 2005.
doi:10.1109/TGRS.2005.855064

25. Lee, J.-S., D. L. Schuler, and T. L. Ainsworth, "Polarimetric SAR data compensation for terrain azimuth slope variation," IEEE Trans. on Geosci. Remote Sensing, Vol. 38, No. 5, 2153-2163, 2000.
doi:10.1109/36.868874

26. Antropov, O., Y. Rauste, and T. Hame, "Volume scattering modeling in PolSAR decompositions: Study of ALOS PALSAR data over boreal forest," IEEE Trans. on Geosci. Remote Sensing, Vol. 49, No. 10, 3838-3848, 2011.
doi:10.1109/TGRS.2011.2138146

27. Freeman, A., "Fitting a two-component scattering model to polarimetric SAR data from forests," IEEE Trans. on Geosci. Remote Sensing, Vol. 45, No. 8, 2583-2592, 2007.
doi:10.1109/TGRS.2007.897929

28. Arii, M., J. J. van Zyl, and Y. Kim, "A general characterization for polarimetric scattering from vegetation canopies," IEEE Trans. on Geosci. Remote Sensing, Vol. 48, No. 9, 3349-3357, 2010.
doi:10.1109/TGRS.2010.2046331

29. Arii, M., J. J. van Zyl, and Y. Kim, "Adaptive model-based decomposition of polarimetric SAR covariance matrices," IEEE Trans. on Geosci. Remote Sensing, Vol. 49, No. 3, 1104-1113, 2011.
doi:10.1109/TGRS.2010.2076285

30. Chen, S.-W., X.-S. Wang, Y.-Z. Li, and M. Sato, "Adaptive modelbased polarimetric decomposition using PolInSAR coherence," IEEE Trans. on Geosci. Remote Sensing, No. 99, 1, 2013.

31. Cui, Y., Y. Yamaguchi, J. Yang, H. Kobayashi, S.-E. Park, and G. Singh, "On complete model-based decomposition of polarimetric SAR coherence matrix data," polarimetric SAR coherence matrix data Geosci. Remote Sensing, 2013.
doi:10.1109/TGRS.2013.2257603

32. Lee, J.-S., T. L. Ainsworth, and Y.Wang, "Generalized polarimet-ric model-based decompositions using incoherent scattering modric model-based decompositions using incoherent scattering models," IEEE Trans. on Geosci. Remote Sensing, No. 99, 1-18, 2013.
doi:10.1109/TGRS.2013.2262051

33. Allain, S., "Caracterisation d'un Sol nu µa partir de donnees SAR Polarimetriques: Etude Multi-frequentielle et Multi-resolutions," Ph.D. Thesis, University of Rennes, 2003.

34. Lopez-Sanchez, J. M., S. R. Cloude, and J. D. Ballester-Berman, "Rice phenology monitoring by means of SAR polarimetry at X band," IEEE Trans. on Geosci. Remote Sensing, Vol. 50, No. 7, 2695-2709, 2012.
doi:10.1109/TGRS.2011.2176740

35. Cloude, S. R. and E. Pottier, "An entropy based classification scheme for land applications of polarimetric SAR," IEEE Trans. on Geosci. Remote Sensing, Vol. 35, No. 1, 68-78, 1997.
doi:10.1109/36.551935

36. Wang, Y., J. F. Paris, and F. W. Davis, "Inclusion of a simple multiple scattering model into a microwave canopy backscatter model," Remote Sensing of Environment, Vol. 63, No. 2, 101-111, 1998.
doi:10.1016/S0034-4257(97)00129-6

37. Ulaby, F. T., R. K. Moore, and A. K. Fung, , Microwave Remote Sensing: From Theory to Applications, Vol. 3, Artech House, 1986.

38. Mattia, F., T. Le Toan, J.-C. Souyris, G. de Carolis, N. Floury, F. Posa, and G. Pasquariello, "The effect of surface roughness on multifrequency polarimetric SAR data," IEEE Trans. on Geosci. Remote Sensing, Vol. 35, 954-966, 1997.
doi:10.1109/36.602537

39. Cloude, S. R. and K. P. Papathanassiou, "Surface roughness and polarimetric entropy," Proceedings of the IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Vol. 5, 2443-2445, 1999.

40. Schuler, D. L., J.-S. Lee, D. Kasilingam, and G. Nesti, "Surface roughness and slope measurements using polarimetric SAR data," IEEE Trans. on Geosci. Remote Sensing, Vol. 40, 687-698, 40, 687{.

41. Truong-Loi, M.-L., P. Dubois-Fernandez, A. Freeman, and E. Pottier, "The conformity coe±cient or how to explore the scattering behaviour from compact polarimetry mode," 2009 IEEE Radar Conference, 1-6, 2009.
doi:10.1109/RADAR.2009.4977048

42. Lee, J. S. and T. L. Ainsworth, "The effect of orientation angle compensation on coherency matrix and polarimetric target decompositions," IEEE Trans. on Geosci. Remote Sensing, Vol. 49, No. 1, 53-64, 2011.
doi:10.1109/TGRS.2010.2048333

43. Topp, G. C., J. L. Davis, and A. P. Annan, "Electromagnetic determination of soil water content: Measurements in coaxial transmission lines," Water Resources Research, Vol. 16, 574-582, 1980.
doi:10.1029/WR016i003p00574

44. Baggiolini, M., "Les stades repµeres dans le developpement annuel de la vigne et leur utilisation pratique," Revue Romande d'Agriculture et d'Arboriculture, Vol. 8, 4-6, 1952.

45. Liang, D., P. Xu, L. Tsang, Z. Gui, and K.-S. Chen, "Electromagnetic scattering by rough surfaces with large heights and slopes with applications to microwave remote sensing of rough surface over layered media," Progress In Electromagnetics Research, Vol. 95, 199{-218, 2009.
doi:10.2528/PIER09071413

46. Treuhaft, R. N., S. T. Lowe, and E. Cardellach, "Formulating a vector wave expression for polarimetric GNSS surface scattering," Progress In Electromagnetics Research B, Vol. 33, 257-276, 2011.
doi:10.2528/PIERB11042910

47. Neumann, M., L. Ferro-Famil, and A. Reigber, "Improvement of vegetation parameter retrieval from polarimetric SAR interferometry using a simple polarimetric scattering model," 4th POLinSAR Workshop, 2009.

48. Ballester-Berman, J. D. and J. M. Lopez-Sanchez, "Applying the Freeman-Durden decomposition concept to polarimetric SAR interferometry," IEEE Trans. on Geosci. Remote Sensing, Vol. 48, No. 1, 466-479, 2010.
doi:10.1109/TGRS.2009.2024304

49. Xing, S., D. Dai, Y. Li, and X. Wang, "Polarimetric SAR tomography using l_{2,1} mixed norm sparse reconstruction method," Progress In Electromagnetics Research, Vol. 130, 105-130, 2012.


© Copyright 2014 EMW Publishing. All Rights Reserved