1. Reid, M. T. H., A. W. Rodriguez, J. White, and S. G. Johnson, "Efficient computation of casimir interactions between arbitrary 3D objects," Phys. Rev. Lett., Vol. 103, 2009.
doi:10.1103/PhysRevLett.103.040401 Google Scholar
2. Reid, M. T. H., J. White, and S. G. Johnson, "Computation of casimir interactions between arbitrary three-dimensional objects with arbitrary material properties," Phys. Rev. A, Vol. 84, 2011.
doi:10.1103/PhysRevA.84.010503 Google Scholar
3. Van Kampen, N. G., B. R. A. Nijboer, and K. Schram, "On the macroscopic theory of van derWaals forces," Phys. Lett., Vol. 26A, 307, 1968. Google Scholar
4. Qian, Z.-G. and W. C. Chew, "Fast full-wave surface integral equation solver for multiscale structure modeling," IEEE Trans. Antennas Propag., Vol. 57, No. 11, 3594-3601, Nov. 2009.
doi:10.1109/TAP.2009.2023629 Google Scholar
5. Li, H. and M. Kardar, "Fluctuation-induced forces between rough surfaces," Phys. Rev. Lett., Vol. 67, No. 23, 3275-3278, 1991.
doi:10.1103/PhysRevLett.67.3275 Google Scholar
6. Chew, W. C., M. Tong, and B. Hu, Integral Equation Methods for Electromagnetic and Elastic Waves, Morgan & Claypool, USA, 2009.
7. Barash, Y. S. and V. L. Ginzburg, "Electromagnetic fluctuations in matter and molecular (van-der-Waals) forces between them," Sov. Phys. Usp., Vol. 18, No. 5, 305-322, 1975.
doi:10.1070/PU1975v018n05ABEH001958 Google Scholar
8. Milonni, P. W., The Quantum Vacuum: An Introduction to Quantum Electrodynamics, Academic Press, San Diego, CA, 1994.
9. Langbein, D., "The macroscopic theory of van der Waals attraction," Solid State Comm., Vol. 12, 853-855, 1973.
doi:10.1016/0038-1098(73)90093-8 Google Scholar
10. Schram, K., "On the macroscopic theory of retarded van der Waals forces," Phys. Lett., Vol. 43A, No. 3, 282-284, 1973. Google Scholar
11. Lambrecht, A. and V. N. Marachevsky, "New geometries in the casimir effect: Dielectric gratings," J. Phys. Conf. Ser., Vol. 161, 1-8, 2009. Google Scholar
12. Ginzburg, V. L., Theoretical Physics and Astrophysics, Pergamon Press, New York, 1979.
13. Lamoreaux, S. K., "The casimir force: Background, experiments, and applications," Rep. Prog. Phys., Vol. 68, 201-236, 2005.
doi:10.1088/0034-4885/68/1/R04 Google Scholar
14. Rosa, F. S. S., D. A. R. Dalvit, and P. Milonni, "Electromagnetic energy, absorption, and casimir forces: Uniform dielectric media in thermal equilibrium," Phys. Rev. A, Vol. 81, 033812, 2010.
doi:10.1103/PhysRevA.81.033812 Google Scholar
15. Rosa, F. S. S., D. A. R. Dalvit, and P. Milonni, "Electromagnetic energy, absorption, and casimir forces. II. Inhomogeneous dielectric media," Phys. Rev. A, Vol. 84, 053813, 2011.
doi:10.1103/PhysRevA.84.053813 Google Scholar
16. Sernelius, B. E., "Casimir force and complications in the Van Kampen theory for dissipative systems," Phys. Rev. B, Vol. 74, 233103, 2006.
doi:10.1103/PhysRevB.74.233103 Google Scholar
17. Intravaia, F. and R. Behunin, "Casimir effect as a sum over modes in dissipative system," Phys. Rev. A, Vol. 86, 062517, 2012.
doi:10.1103/PhysRevA.86.062517 Google Scholar
18. Chew, W. C., Waves and Fields in Inhomogeneous Media, IEEE Press, New York, 1995.
19. Rao, S. M., D. R. Wilton, and A. W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propag., Vol. 30, 409-418, 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
20. Jiang, L. J. and W. C. Chew, "The mixed-form fast multipole algorithm for broadband electromagnetic simulations," Antennas and Propagation Society International Symposium, 180-183, 2005. Google Scholar
21. Poggio, A. J. and E. K. Miller, Integral Equation Solutions of Three Dimensional Scattering Problems, R. Mittra, Ed., Permagon, Elmsford, NY, 1973.
22. Chang, Y. and R. Harrington, "A surface formulation for characteristic modes of material bodies," IEEE Trans. Antennas Propag. , Vol. 25, 789-795, 1977.
doi:10.1109/TAP.1977.1141685 Google Scholar
23. Wu, T. and L. L. Tsai, "Scattering from arbitrarily-shaped lossy dielectric bodies of revolution," Radio Sci., Vol. 12, No. 5, 709-718, 1977.
doi:10.1029/RS012i005p00709 Google Scholar
24. Medgyesi-Mitschang, L. N., J. M. Putnam, and M. B. Gedera, "Generalized method of moments for three-dimensional penetrable scatterers," J. Opt. Soc. Am. A, Vol. 11, No. 4, 1383-1398, 1994.
doi:10.1364/JOSAA.11.001383 Google Scholar
25. Chew, W. C. and L. E. Sun, "A novel formulation of the volume integral equation for electromagnetic scattering," Waves in Random and Complex Media, Vol. 19, No. 1, 162-180, 2009.
doi:10.1080/17455030802625427 Google Scholar
26. Chew, W. C., J. L. Xiong, and M. A. Saville, "A matrix-friendly formulation of layered medium Green's function," IEEE Antennas Wireless Propag. Lett., Vol. 5, 490-494, 2006.
doi:10.1109/LAWP.2006.886306 Google Scholar