PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 142 > pp. 683-699

DC MAGNETIC CONCENTRATOR AND OMNIDIRECTIONAL CASCADED CLOAK BY USING ONLY ONE OR TWO HOMOGENEOUS ANISOTROPIC MATERIALS OF POSITIVE PERMEABILITY

By F. Sun and S. He

Full Article PDF (790 KB)

Abstract:
A novel concentrator for static magnetic field enhancement is proposed and designed utilizing transformation optics. Compared with other devices for static magnetic field enhancement, our device has many good features: first, our concentrator can achieve a DC magnetic field enhancement in a relatively large free space with high uniformity. Secondly, our concentrator is composed by only one or two homogenous anisotropic materials with principal value greater than zero (without any infinitely large or zero value), which can be achieved by using currently available materials. Thirdly, the geometrical shape of the proposed device determines the enhancement factor and the permeability of the device. After choosing suitable geometrical parameters, we can obtain a concentration with a suitable enhancement factor and a material requirement that is easily achievable. The proposed concentrator will have many important applications in many areas (e.g., magnetic resonance imaging and magnetic sensors). Based on the same theoretical model, we also proposed a cascaded shielding device cloak for static magnetic fields. The proposed DC magnetic shielding device can be realized without using any material of zero permeability, and will have potential applications in, e.g., hiding a metallic object from being detected by a metal locator.

Citation:
F. Sun and S. He, "DC Magnetic Concentrator and Omnidirectional Cascaded Cloak by Using Only One or Two Homogeneous Anisotropic Materials of Positive Permeability," Progress In Electromagnetics Research, Vol. 142, 683-699, 2013.
doi:10.2528/PIER13092509
http://www.jpier.org/PIER/pier.php?paper=13092509

References:
1. Brown, M. A. and R. C. Semelka, MRI: Basic Principles and Applications, Wiley-Blackwell, 2010.
doi:10.1002/0471467936

2. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83-86, 2007.
doi:10.1126/science.1143254

3. Ripka, P. and M. Janosek, "Advances in magnetic field sensors ," IEEE Sens. J., Vol. 10, No. 6, 1108-1116, 2010.
doi:10.1109/JSEN.2010.2043429

4. Kobayashi, M. and A. Pascual-Leone, "Transcranial magnetic stimulation in neurology," The Lancet Neurology, Vol. 2, No. 3, 145-156, 2003.
doi:10.1016/S1474-4422(03)00321-1

5. Dobson, J., "Magnetic micro- and nano-particle-based targeting for drug and gene delivery," Nanomedicine, Vol. 1, No. 1, 31-37, 2006.
doi:10.2217/17435889.1.1.31

6. Veiseh, O., J. W. Gunn, and M. Zhang, "Design and fabrication of magnetic nanoparticles for targeted drug delivery and imaging," J. W. Gunn, and M. Zhang,, Vol. 62, No. 3, 284-304, 2010.

7. , , " ," , National High Magnetic Field Laboratory, http://www.magnet, fsu.deu/usershub/scientificdivisions/dcfield/facilities.html.
doi:10.1016/0921-4526(95)00468-8

8. Iwasa, Iwasa, "Hybrid magnets: A magnet engineer's experience and a proposal for the next generation of hybrids," Physica B, Vol. 216, No. 3-4, 186-192, 1996.
doi:10.1109/TASC.2009.2018440

9. Kiyoshi, T., S. Choi, S. Matsumoto, T. Asano, and D. Uglietti, "Magnetic flux concentrator using Gd-Ba-Cu-O bulk super-conductors," IEEE Transactions on Applied Superconductivity, Vol. 19, No. 3, 2174-2177, 2009.
doi:10.1088/0953-2048/24/10/105012

10. Zhang, Z. Y., S. Matsumoto, S. Choi, R. Teranishi, and T. Kiyoshi, "Comparison of different configurations of NbTimagnetic lenses," Supercond. Sci. Technol., Vol. 24, No. 10, 105012, 2011.
doi:10.1088/0953-2048/25/2/025009

11. Zhang, Z. Y., S. Choi, S. Matsumoto, R. Teranshi, G. Giunchi, A. F. Albisetti, and T. Kiyoshi, "Magnetic lenses using different MgB2 bulk superconductors," Supercond. Sci. Technol., Vol. 25, No. 2, 025009, 2012.
doi:10.1103/PhysRevLett.109.263903

12. Navau, C., J. Prat-Camps, and A. Sanchez, "Magnetic energy harvesting and concentration at a distance by transformation optics," Phys. Rev. Lett., Vol. 109, 263903, 2012.

13. Sun, F. and S. He, "Create a uniform static magnetic field over 50T in a large free space region," Progress In Electromagnetic Research, Vol. 137, 149-157, 2013.

14. Sun, F. and S. He, "Static magnetic field concentration and enhancement using magnetic materials with positive permeability," Progress In Electromagnetic Research, Vol. 142, 579-590, 2013.

15. Gomory, F., M. Solovyov, J. Souc, and C. Navau, "Superconductor-ferromagnetic metamaterials for magnetic cloaking and concentration," Supercond. Sci. Technol., Vol. 26, 074001, 2013.

16. Leonhardt, U. and T. G. Philbin, Geometry and Light: Science of Invisibility, Dover, 2010.
doi:10.1126/science.1125907

17. Pendry, J. B., D. Schuring and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 132, No. 5781, 1780-1782, 2006.
doi:10.1016/j.photonics.2007.07.013

18. Rahm, M., D. Schurig, D. A. Roberts, S. A. Cummer, D. R. Smith, and J. B. Pendry, "Design of electromagnetic cloak and concentra-tors using form-invariant coordinate transformations of Maxwell's equations," Photonics and Nanostructures-Fundamentals and Applications, Vol. 6, 87-95, 2008.
doi:10.1088/0022-3727/44/12/125401

19. Li, W., J. Guan and W. Wang, "Homogeneous-materials-constructed electromagnetic field concentrators with adjustable concentrating ratio," J. Phys. D: Appl. Phys., Vol. 44, 125401, 2011.
doi:10.1038/ncomms1176

20. Chen, X., Y. Luo, J. Zhang, K. Jiang J. B. Pendry, and S. Zhang, "Macroscopic invisibility cloaking of visible light," Nature Communications, Vol. 2, 176, 2011.
doi:10.1063/1.4808013

21. , , , The Finite Element Simulation is Conducted by Using Commercial Software COMSOL Multiphysics, http://www.comsol.com.
doi:10.1038/nmat2126

22. Wang, R., Z. L. Mei, and T. J. Cui, "A carpet cloak for static magnetic field," Appl. Phys. Lett., Vol. 102, 213501, 2013.

23. Magnus, F., B. Wood, J. Moore, K. Morrison, G. Perkins, J. Fyson, M. C. Wiltshire, D. Caplin, L. F. Cohen, and J. B. Pendry, "A D.C. magnetic metamaterial," Nature Materials, Vol. 7, 295-297, 2008.

24. Landy, N. and D. R. Smith, "A full-parameter unidirectional metamaterials cloak for microwaves," Nature Materials, Vol. 12, 25-28, 2013.


© Copyright 2014 EMW Publishing. All Rights Reserved