Vol. 143

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Dual-Band Circular Polarizer and Asymmetric Spectrum Filter Using Ultrathin Compact Chiral Metamaterial

By He-Xiu Xu, Guang-Ming Wang, Mei-Qing Qi, and Tong Cai
Progress In Electromagnetics Research, Vol. 143, 243-261, 2013


A compact chiral metamaterial is proposed and comprehensively investigated that can achieve circularly polarized wave emission from linearly polarized incident wave (giant circular dichroism) over dual bands and near Diodelike asymmetric transmission of linearly polarized waves. The chiral metamaterial also features exceptionally strong optical activity. For verification, two proof-of-concept slab samples are designed, fabricated and measured at microwave frequencies. Numerical and experimental results agree well, indicating that the former dual-band circular polarizer features high conversion efficiency around 8.1 and 9.9 GHz in addition to large polarization extinction ratio of more than 16 dB, while the latter chiral sample enables the near 90% cross-polarization transmission in one direction and almost 10% transmission in the opposite direction. The block "meta-atom" that utilized to build the ultrathin CMM slab is less than λ0/6.73 evaluated at operating frequency. Good performances of the two chiral slabs with simple and compact package suggest promising applications in the circular polarizers (circulators) and transparent linear polarization transformers or spectrum filters (isolators) that need to be interpreted with other compact devices.


He-Xiu Xu, Guang-Ming Wang, Mei-Qing Qi, and Tong Cai, "Dual-Band Circular Polarizer and Asymmetric Spectrum Filter Using Ultrathin Compact Chiral Metamaterial," Progress In Electromagnetics Research, Vol. 143, 243-261, 2013.


    1. Decker, M., R. Zhao, C. M. Soukoulis, S. Linden, and M.Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Opt. Lett., Vol. 35, 1593-1595, 2010.

    2. Kwon, D. H., P. L. Werner, and D. H. Werner, "Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation," Opt. Express, Vol. 16, 11802-11807, 2008.

    3. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, 177401, 2006.

    4. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, No. 5700, 1353-1355, 2004.

    5. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, 035407, 2009.

    6. Wongkasem, N., A. Akyurtlu, K. A. Marx, Q. Dong, J. Li, and W. D. Goodhue, "Development of chiral negative refractive index metamaterials for the terahertz frequency regime," IEEE Trans. Antennas Propag., Vol. 55, No. 11, 3052-3062, 2007.

    7. Wu, Z., B. Q. Zhang, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.

    8. Li, J., F.-Q. Yang, and J.-F. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

    9. Zarifi, D., M. Soleimani, V. Nayyeri, and J. Rashed-Mohassel, "On the miniaturization of semiplanar chiral metamaterial structures," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5768-5776, 2012.

    10. Plum, E., V. A. Fedotov, and N. I. Zheludev, "Planar metamaterial with transmission and reflection that depend on the direction of incidence," Appl. Phys. Lett., Vol. 94, 131901, 2009.

    11. Menzel, C., C. Helgert, C. Rockstuhl, E.-B. Kley, A. TÄunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.

    12. Huang, C., Y. Feng, J. Zhao, Z.Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, 195131, 2012.

    13. Cheng, Y., Y. Nie, X. Wang, and R. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys. A, Vol. 111, 209-215, 2013.

    14. Shi, J. H., Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, "Tunable symmetric and asymmetric resonances in an asymmetrical split ring metamaterial," J. Appl. Phys., Vol. 112, 073522, 2012.

    15. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling," Phys. Rev. Lett., Vol. 108, 213905, 2012.

    16. Gansel, J. K., G.M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, von Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513-1515, 2009.

    17. Euler, M., V. Fusco, R. Cahill, and R. Dickie, "325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2457-2459, 2010.

    18. Wu, C., H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, "Metallic helix array as a broadband wave plate," Phys. Rev. Lett., Vol. 107, 177401, 2011.

    19. Zhao, Y., M. A. Belkin, and A. Alµu, "Twisted optical metamate-rials for planarized ultrathin broadband circular polarizers," Nat. Commun., Vol. 3, 870, 2012.

    20. Ye, Y., X. Li, F. Zhuang, and S.-W. Chang, "Homogeneous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 99, 031111, 2011.

    21. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators," Opt. Lett., Vol. 36, 1653-1655, 2011.

    22. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Opt. Express, Vol. 20, No. 14, 16050-16058, 2012.

    23. Xu, H.-X., G.-M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, "Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial," Opt. Express, Vol. 21, No. 21, 24912-24921, 2013.

    24. Yana, S. and G. A. E. Vandenbosch, "Compact circular polarizer based on chiral twisted double split-ring resonator," Appl. Phys. Lett., Vol. 102, 103503, 2013.

    25. Chin, J. Y., J. N. Gollub, J. J. Mock, R. Liu, C. Harrison, D. R. Smith, and T. J. Cui, "An effcient broadband metamaterial wave retarder," Opt. Express, Vol. 17, 7640-7647, 2009.

    26. Ye, Y. and S. He, "90 polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett., Vol. 96, 203501, 2010.

    27. Song, K., X. P. Zhaoa, Q. H. Fu, Y. H. Liu, and W. R. Zhu, "Wide-angle 90-polarization rotator using chiral metamaterial with negative refractive index," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14--15, 1967-1976, 2012.

    28. Song, K., Y. H. Liu, Q. Fu, X. P. Zhao, C. R. Luo, and W. R. Zhu, "90 polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial," Opt. Express, Vol. 21, 7439-7446, 2013.

    29. Mutlu, M. and E. Ozbay, "A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling," Appl. Phys. Lett., Vol. 100, 051909, 2012.

    30. Shi, J. H., H. F. Ma, W. X. Jiang, and T. J. Cui, "Multiband stereometamaterial-based polarization spectral filter," Phys. Rev. B, Vol. 86, 035103, 2012.

    31. Zari, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.

    32. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarized waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904, 2005.

    33. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 033108, 2009.

    34. Xu, H.-X., G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, and Z.-M. Xu, "Triple-band polarization-insensitive wide-angle ultraminiature metamaterial transmission line absorber," Phys. Rev. B, Vol. 86, 205104, 2012.

    35. Xu, , H.-X., G.-M. Wang, M. Q. Qi, L. Li, and T. J. Cui, "Three-dimensional super lens composed of fractal left-handed materials," Adv. Opt. Mater., Vol. 1, 495-502, 2013.

    36. Xu, H. X., G. M. Wang, and M. Q. Qi, "Hilbert-shaped magnetic waveguided metamaterials for electromagnetic coupling reduction of microstrip antenna array," IEEE Trans. Magnetics, Vol. 49, No. 4, 1526-1529, 2013.

    37. Baena, J. D., et al., "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1451-1461, 2005.