Vol. 143

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2013-11-01

Dual-Band Circular Polarizer and Asymmetric Spectrum Filter Using Ultrathin Compact Chiral Metamaterial

By He-Xiu Xu, Guang-Ming Wang, Mei-Qing Qi, and Tong Cai
Progress In Electromagnetics Research, Vol. 143, 243-261, 2013
doi:10.2528/PIER13093009

Abstract

A compact chiral metamaterial is proposed and comprehensively investigated that can achieve circularly polarized wave emission from linearly polarized incident wave (giant circular dichroism) over dual bands and near Diodelike asymmetric transmission of linearly polarized waves. The chiral metamaterial also features exceptionally strong optical activity. For verification, two proof-of-concept slab samples are designed, fabricated and measured at microwave frequencies. Numerical and experimental results agree well, indicating that the former dual-band circular polarizer features high conversion efficiency around 8.1 and 9.9 GHz in addition to large polarization extinction ratio of more than 16 dB, while the latter chiral sample enables the near 90% cross-polarization transmission in one direction and almost 10% transmission in the opposite direction. The block "meta-atom" that utilized to build the ultrathin CMM slab is less than λ0/6.73 evaluated at operating frequency. Good performances of the two chiral slabs with simple and compact package suggest promising applications in the circular polarizers (circulators) and transparent linear polarization transformers or spectrum filters (isolators) that need to be interpreted with other compact devices.

Citation


He-Xiu Xu, Guang-Ming Wang, Mei-Qing Qi, and Tong Cai, "Dual-Band Circular Polarizer and Asymmetric Spectrum Filter Using Ultrathin Compact Chiral Metamaterial," Progress In Electromagnetics Research, Vol. 143, 243-261, 2013.
doi:10.2528/PIER13093009
http://www.jpier.org/PIER/pier.php?paper=13093009

References


    1. Decker, M., R. Zhao, C. M. Soukoulis, S. Linden, and M.Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Opt. Lett., Vol. 35, 1593-1595, 2010.
    doi:10.1364/OL.35.001593

    2. Kwon, D. H., P. L. Werner, and D. H. Werner, "Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation," Opt. Express, Vol. 16, 11802-11807, 2008.
    doi:10.1364/OE.16.011802

    3. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, 177401, 2006.
    doi:10.1103/PhysRevLett.97.177401

    4. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, No. 5700, 1353-1355, 2004.
    doi:10.1126/science.1104467

    5. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, 035407, 2009.
    doi:10.1103/PhysRevB.79.035407

    6. Wongkasem, N., A. Akyurtlu, K. A. Marx, Q. Dong, J. Li, and W. D. Goodhue, "Development of chiral negative refractive index metamaterials for the terahertz frequency regime," IEEE Trans. Antennas Propag., Vol. 55, No. 11, 3052-3062, 2007.
    doi:10.1109/TAP.2007.909419

    7. Wu, Z., B. Q. Zhang, and S. Zhong, "A double-layer chiral metamaterial with negative index," Journal of Electromagnetic Waves and Applications, Vol. 24, No. 7, 983-992, 2010.
    doi:10.1163/156939310791285173

    8. Li, J., F.-Q. Yang, and J.-F. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

    9. Zarifi, D., M. Soleimani, V. Nayyeri, and J. Rashed-Mohassel, "On the miniaturization of semiplanar chiral metamaterial structures," IEEE Trans. Antennas Propag., Vol. 60, No. 12, 5768-5776, 2012.
    doi:10.1109/TAP.2012.2214015

    10. Plum, E., V. A. Fedotov, and N. I. Zheludev, "Planar metamaterial with transmission and reflection that depend on the direction of incidence," Appl. Phys. Lett., Vol. 94, 131901, 2009.
    doi:10.1063/1.3109780

    11. Menzel, C., C. Helgert, C. Rockstuhl, E.-B. Kley, A. TÄunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.
    doi:10.1103/PhysRevLett.104.253902

    12. Huang, C., Y. Feng, J. Zhao, Z.Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, 195131, 2012.
    doi:10.1103/PhysRevB.85.195131

    13. Cheng, Y., Y. Nie, X. Wang, and R. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys. A, Vol. 111, 209-215, 2013.
    doi:10.1007/s00339-013-7546-1

    14. Shi, J. H., Z. Zhu, H. F. Ma, W. X. Jiang, and T. J. Cui, "Tunable symmetric and asymmetric resonances in an asymmetrical split ring metamaterial," J. Appl. Phys., Vol. 112, 073522, 2012.
    doi:10.1063/1.4757961

    15. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling," Phys. Rev. Lett., Vol. 108, 213905, 2012.
    doi:10.1103/PhysRevLett.108.213905

    16. Gansel, J. K., G.M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, von Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513-1515, 2009.
    doi:10.1126/science.1177031

    17. Euler, M., V. Fusco, R. Cahill, and R. Dickie, "325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2457-2459, 2010.
    doi:10.1109/TAP.2010.2048874

    18. Wu, C., H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, "Metallic helix array as a broadband wave plate," Phys. Rev. Lett., Vol. 107, 177401, 2011.
    doi:10.1103/PhysRevLett.107.177401

    19. Zhao, Y., M. A. Belkin, and A. Alµu, "Twisted optical metamate-rials for planarized ultrathin broadband circular polarizers," Nat. Commun., Vol. 3, 870, 2012.
    doi:10.1038/ncomms1877

    20. Ye, Y., X. Li, F. Zhuang, and S.-W. Chang, "Homogeneous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 99, 031111, 2011.
    doi:10.1063/1.3615054

    21. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators," Opt. Lett., Vol. 36, 1653-1655, 2011.
    doi:10.1364/OL.36.001653

    22. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Opt. Express, Vol. 20, No. 14, 16050-16058, 2012.
    doi:10.1364/OE.20.016050

    23. Xu, H.-X., G.-M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, "Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial," Opt. Express, Vol. 21, No. 21, 24912-24921, 2013.
    doi:10.1364/OE.21.024912

    24. Yana, S. and G. A. E. Vandenbosch, "Compact circular polarizer based on chiral twisted double split-ring resonator," Appl. Phys. Lett., Vol. 102, 103503, 2013.
    doi:10.1063/1.4794940

    25. Chin, J. Y., J. N. Gollub, J. J. Mock, R. Liu, C. Harrison, D. R. Smith, and T. J. Cui, "An effcient broadband metamaterial wave retarder," Opt. Express, Vol. 17, 7640-7647, 2009.
    doi:10.1364/OE.17.007640

    26. Ye, Y. and S. He, "90 polarization rotator using a bilayered chiral metamaterial with giant optical activity," Appl. Phys. Lett., Vol. 96, 203501, 2010.
    doi:10.1063/1.3429683

    27. Song, K., X. P. Zhaoa, Q. H. Fu, Y. H. Liu, and W. R. Zhu, "Wide-angle 90-polarization rotator using chiral metamaterial with negative refractive index," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14--15, 1967-1976, 2012.
    doi:10.1080/09205071.2012.723673

    28. Song, K., Y. H. Liu, Q. Fu, X. P. Zhao, C. R. Luo, and W. R. Zhu, "90 polarization rotator with rotation angle independent of substrate permittivity and incident angles using a composite chiral metamaterial," Opt. Express, Vol. 21, 7439-7446, 2013.
    doi:10.1364/OE.21.007439

    29. Mutlu, M. and E. Ozbay, "A transparent 90 polarization rotator by combining chirality and electromagnetic wave tunneling," Appl. Phys. Lett., Vol. 100, 051909, 2012.
    doi:10.1063/1.3682591

    30. Shi, J. H., H. F. Ma, W. X. Jiang, and T. J. Cui, "Multiband stereometamaterial-based polarization spectral filter," Phys. Rev. B, Vol. 86, 035103, 2012.
    doi:10.1103/PhysRevB.86.035103

    31. Zari, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
    doi:10.2528/PIER11110506

    32. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarized waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904, 2005.
    doi:10.1103/PhysRevLett.95.123904

    33. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, 033108, 2009.
    doi:10.1103/PhysRevB.80.033108

    34. Xu, H.-X., G.-M. Wang, M.-Q. Qi, J.-G. Liang, J.-Q. Gong, and Z.-M. Xu, "Triple-band polarization-insensitive wide-angle ultraminiature metamaterial transmission line absorber," Phys. Rev. B, Vol. 86, 205104, 2012.
    doi:10.1103/PhysRevB.86.205104

    35. Xu, , H.-X., G.-M. Wang, M. Q. Qi, L. Li, and T. J. Cui, "Three-dimensional super lens composed of fractal left-handed materials," Adv. Opt. Mater., Vol. 1, 495-502, 2013.
    doi:10.1002/adom.201300023

    36. Xu, H. X., G. M. Wang, and M. Q. Qi, "Hilbert-shaped magnetic waveguided metamaterials for electromagnetic coupling reduction of microstrip antenna array," IEEE Trans. Magnetics, Vol. 49, No. 4, 1526-1529, 2013.
    doi:10.1109/TMAG.2012.2230272

    37. Baena, J. D., et al., "Equivalent-circuit models for split-ring resonators and complementary split-ring resonators coupled to planar transmission lines," IEEE Trans. Microw. Theory Tech., Vol. 53, No. 4, 1451-1461, 2005.
    doi:10.1109/TMTT.2005.845211