PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 144 > pp. 103-114

AZIMUTH STACKING ALGORITHM FOR SYNTHETIC APERTURE RADAR IMAGING

By Z. Li, T. Jin, J. Wu, J. Wang, and Q. H. Liu

Full Article PDF (392 KB)

Abstract:
The aim of this paper is to present a frequency domain method for synthetic aperture radar (SAR) imaging. By using two consecutive linear mappings along Doppler and frequency domains, an azimuth-dependent SAR transfer function has been discovered. Based on this new transfer function, the SAR image can be reconstructed by the proposed azimuth stacking algorithm. The new algorithm can form SAR image at each azimuth position without DFT wrap around errors. If Chirp z-transform (CZT) is applied to carry out the two consecutive mappings (since they are linear mappings), the proposed algorithm will not require interpolations and thus its reconstructed image would be free of truncation errors. The new algorithm has been validated using both simulated and experimental ultrawideband/widebeam (UWB/WB) SAR data.

Citation:
Z. Li, T. Jin, J. Wu, J. Wang, and Q. H. Liu, "Azimuth Stacking Algorithm for Synthetic Aperture Radar Imaging," Progress In Electromagnetics Research, Vol. 144, 103-114, 2014.
doi:10.2528/PIER13112203
http://www.jpier.org/PIER/pier.php?paper=13112203

References:
1. Curlander, J. C. and R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing, Wiley, New York, 1991.

2. Soumek, M., "Synthetic Aperture Radar Signal Processing with MATLAB Algorithms," Wiley, 1999.

3. Frey, O., C. Magnard, M. Ruegg, and E. Meier, "Focusing of airborne synthetic aperture radar data from highly nonlinear flight tracks," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 6, 1844-1858, 2009.
doi:10.1109/TGRS.2008.2007591

4. Yegulalp, A. F., "Fast backprojection algorithm for synthetic aperture radar," Proc. Record of the 1999 IEEE Radar Conf. , 60-65, 1999.

5. Ulander, L. M. H., H. Hellsten, and G. Stenstrom, "Synthetic-aperture radar processing using fast factorized back-projection," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 3, 760-776, 2003.
doi:10.1109/TAES.2003.1238734

6. Frolind, P.-O. and L. M. H. Ulander, "Evaluation of angular interpolation kernels in fast back-projection SAR processing," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 153, No. 3, 243-249, 2006.
doi:10.1049/ip-rsn:20045110

7. Demanet, L., , M. Ferrara, N. Maxwell, J. Poulson, and L. Ying, "A butterfly algorithm for synthetic aperture radar imaging," SIAM J. Img. Sci., Vol. 5, 203-243, 2012.
doi:10.1137/100811593

8. Cumming, I. G. and and F. H. Wong, "Digital Processing of Synthetic Aperture Radar Data: Algorithms and Implementation," Artech House, 2005.

9. Runge, H. and R. Bamler, "A novel high precision SAR focussing algorithm based on chirp scaling," Proc. Int. Geoscience and Remote Sensing Symp. IGARSS'92, 372-375, 1992.
doi:10.1109/IGARSS.1992.576715

10. Raney, R. K., H. Runge, R. Bamler, I. G. Cumming, and F. H. Wong, "Precision SAR processing using chirp scaling," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 4, 786-799, 1994.
doi:10.1109/36.298008

11. Davidson, G. W., I. G. Cumming, and M. R. Ito, "Davidson, G. W., I. G. Cumming, and M. R. Ito, \A chirp scaling approach for processing squint mode SAR data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 32, No. 1, 121-133, 1996.
doi:10.1109/7.481254

12. Moreira, A. and Y. Huang, "Airborne SAR processing of highly squinted data using a chirp scaling approach with integrated motion compensation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 32, No. 5, 1029-1040, 1994.
doi:10.1109/36.312891

13. Moreira, A., J. Mittermayer, and R. Scheiber, "Extended chirp scaling algorithm for air- and spaceborne SAR data processing in stripmap and scansar imaging modes," IEEE Transactions on Geoscience and Remote Sensing, Vol. 34, No. 5, 1123-1136, 1996.
doi:10.1109/36.536528

14. Wang, K. and X. Liu, "Quartic-phase algorithm for highly squinted SAR data processing," IEEE Geoscience and Remote Sensing Letters, Vol. 4, No. 2, 246-250, 2007.
doi:10.1109/LGRS.2006.890552

15. Zaugg, E. C. and D. G. Long, "Generalized frequency-domain SAR processing," IEEE Transactions on Geoscience and Remote Sensing, Vol. 47, No. 11, 3761-3773, 2009.
doi:10.1109/TGRS.2009.2025372

16. Cafforio, C., C. Prati, and F. Rocca, "SAR data focusing using seismic migration techniques," IEEE Transactions on Aerospace and Electronic Systems, Vol. 27, No. 2, 194-207, 1991.
doi:10.1109/7.78293

17. Bamler, R., "A comparison of range-Doppler and wavenumber domain SAR focusing algorithms," IEEE Transactions on Geoscience and Remote Sensing, Vol. 30, No. 4, 706-713, 1992.
doi:10.1109/36.158864

18. Zhe, L., W. Jian, and L. Q. Huo, "Interpolation-free Stolt mapping for SAR imaging," IEEE.

19. Reigber, A., E. Alivizatos, A. Potsis, and A. Moreira, "Extended wavenumber-domain synthetic aperture radar focusing with integrated motion compensation," IEE Proceedings --- Radar, Sonar and Navigation, Vol. 153, No. 3, 301-310, 2006.
doi:10.1049/ip-rsn:20045087

20. Rabiner, L., R. Schafer, and C. Rader, "The chirp z-transform algorithm," IEEE Transactions on Audio and Electroacoustics, Vol. 17, No. 2, 86-92, 1969.
doi:10.1109/TAU.1969.1162034

21. Lanari, R., "A new method for the compensation of the SAR range cell migration based on the chirp z-transform," IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 5, 1296-1299, 1995.
doi:10.1109/36.469496

22. Sheen, D. R., C. M. Strawitch, and T. B. Lewis, "UHF wideband SAR design and preliminary results," Proc. Int. Geoscience and Remote Sensing Symp. IGARSS'94. Surface and Atmospheric Remote Sensing: Technologies, Data Analysis , Vol. 1, 289-291, 1994.

23. Sheen, D. R., S. J. Shackman, N. L. VandenBerg, D. L. Wiseman, L. P. Elenbogen, and R. F. reRawson , "The p-3 ultra-wideband SAR: description and examples," Proc. IEEE National Radar Conf., 50-53, 1996.

24. Soumekh, M., D. A. Nobles, M. C. Wicks, and G. R. J. Genello, "Signal processing of wide bandwidth and wide beamwidth p-3 SAR data," IEEE Transactions on Aerospace and Electronic Systems, Vol. 37, No. 4, 1122-1141, 2001.
doi:10.1109/7.976954

25. Goodman, R., S. Tummala, and W. Carrara, "Issues in ultra-wideband, widebeam SAR image formation ," Proc. Record of the IEEE 1995 Int. Radar Conf., 479-485, 1995.

26. Vu, V. T., T. K. Sjogren, M. I. Pettersson, and H. Hellsten, "An impulse response function for evaluation of UWB SAR imaging," IEEE Transactions on Signal Processing, Vol. 58, No. 7, 3927-3932, 2010.
doi:10.1109/TSP.2010.2047503

27. DeGraaf, S. R., "SAR imaging via modern 2-D spectral estimation methods," IEEE Transactions on Image Processing, Vol. 7, No. 5, 729-761, 1998.
doi:10.1109/83.668029

28. Stankwitz, H. C., R. J. Dallaire, and J. R. Fienup, "Nonlinear apodization for sidelobe control in SAR imagery," IEEE Transactions on Aerospace and Electronic Systems, Vol. 31, No. 1, 267-279, 1995.
doi:10.1109/7.366309

29. Harris, F. J., "On the use of windows for harmonic analysis with the discrete Fourier transform," Proceedings of the IEEE, Vol. 66, No. 1, 51-83, 1978.
doi:10.1109/PROC.1978.10837

30. Vu, V. T., T. K. Sjogren, M. I. Pettersson, and A. Gustavsson, Definition on SAR image quality measurements for UWB SAR, 71091A-71091A-9, SPIE | International Society for Optical Engineering, 2008.


© Copyright 2014 EMW Publishing. All Rights Reserved