PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 145 > pp. 319-331

A METHOD FOR DESIGNING BROADBAND DOHERTY POWER AMPLIFIERS

By L. Piazzon, R. Giofre, P. Colantonio, and F. Giannini

Full Article PDF (322 KB)

Abstract:
In this contribution, a design approach for the realization of broadband Doherty Power Amplifiers (DPAs) is proposed and demonstrated. The methodology is based on the exploitation of the wideband response of 2-sections branch-line couplers both as input splitter and output combiner of the DPA. These couplers are designed through a CAD optimization process which is specificaly oriented to the developement of DPAs. The method is also applied to realize a GaN based hybrid prototype that shows more than 36% of fractional bandwidth around 2 GHz frequency range, validated through single carriers and modulated signals (3gpp and WiMax). In single carrier mode an efficiency higher than 41% (>50% in saturation, with a peak of 72%) is obtained in 6 dB of output power dynamic range in the entire operating band. Experimental sesults with 5 MHz 3 gpp and WiMax signals shown an average efficiency of 50% and 45% when 37 dBm and 34 dBm of average output power are reached, respectively.

Citation:
L. Piazzon, R. Giofre, P. Colantonio, and F. Giannini, "A Method for Designing Broadband Doherty Power Amplifiers," Progress In Electromagnetics Research, Vol. 145, 319-331, 2014.
doi:10.2528/PIER14011301
http://www.jpier.org/PIER/pier.php?paper=14011301

References:
1. Raychaudhuri, D. and N. B. Mandayam, "Frontiers of wireless and mobile communications," Proceedings of the IEEE, Vol. 100, No. 4, 824-840, Apr. 2012.
doi:10.1109/JPROC.2011.2182095

2. Mitola, J., "Cognitive radio architecture evolution," Proceedings of the IEEE, Vol. 97, No. 4, 626-641, Apr. 2009.
doi:10.1109/JPROC.2009.2013012

3. Vatankhah, A. and S. Boumaiza, "On wideband/multi-band power amplifier suitable for software defined radios in cognitive networks," International Conference on Signals, Circuits and Systems, 1-6, 2009.

4. Rawat, K., M. S. Hashmi, and F. M. Ghannouchi, "Double the band and optimize," IEEE Microwave Magazine, Vol. 13, No. 2, 69-82, Feb. 2012.
doi:10.1109/MMM.2011.2181449

5. Esch, J., "High-efficiency Doherty power amplifiers: Historical aspect and modern trends," Proceedings of the IEEE, Vol. 100, No. 12, 3187-3189, Dec. 2012.
doi:10.1109/JPROC.2012.2219195

6. Grebennikov, A. and S. Bulja, "High-efciency Doherty power ampliers: Historical aspect and modern trends," Proceedings of the IEEE, Vol. 100, No. 12, 3190-3219, Dec. 2012.
doi:10.1109/JPROC.2012.2211091

7. Giofre, R., L. Piazzon, P. Colantonio, and F. Giannini, "Being seventy-five still young: The Doherty power amplifier," Microwave Journal, Vol. 55, No. 4, 72-88, Apr. 2012.

8. Kim, B., I. Kim, and M. Joughwan, "Advanced Doherty architecture," IEEE Microwave Magazine, Vol. 11, No. 5, 72-86, May 2010.
doi:10.1109/MMM.2010.937098

9. Colantonio, P., F. Feudo, F. Giannini, R. Giofrµe, and L. Piazzon, "Design of a dual-band GaN Doherty amplifier," Proc. Int. Conference on Microwave Radar and Wireless Communications, 1-4, 2010.

10. Li, X., W. Chen, Z. Zhang, Z. Feng, X. Tang, and K. Mouthaan, "A concurrent dual-band Doherty power amplifier," Proc. Asia-Pacific Microwave Conference, 654-657, 2010.

11. Chen, W., S. A. Bassam, X. Li, Y. Liu, K. Rawat, M. Helaoui, F. M. Ghannouchi, and Z. Feng, "Design and linearization of concurrent dual-band Doherty power amplifier with frequency-dependent power ranges," IEEE Trans. Microwave Theory and Techniques, Vol. 59, No. 10, 2537-2546, Oct. 2011.
doi:10.1109/TMTT.2011.2164089

12. Rawat, K. and F. M. Ghannouchi, "Design methodology for dual-band Doherty power amplifier with performance enhancement using dual-band offset lines," IEEE Trans. Industrial Electronics, Vol. 59, No. 12, 4831-4842, Dec. 2012.
doi:10.1109/TIE.2011.2176695

13. Saad, P., P. Colantonio, L. Piazzon, F. Giannini, K. Andersson, and C. Fager, "Design of a oncurrent dual-band 1.8-2.4-GHz GaN-HEMT Doherty power amplifier," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 6, 1840-1849, Jun. 2012.
doi:10.1109/TMTT.2012.2189120

14. Grebennikov, A. and J. Wong, "A dual-band parallel Doherty power amplifier for wireless applications," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 10, 3214-3222, Oct. 2012.
doi:10.1109/TMTT.2012.2210906

15. Nghiem, X. A. and R. Negra, "Novel design of a concurrent tri-band GaN-HEMT Doherty power amplifier," Proc. Asia-Pacific Microwave Conference, 364-366, 2012.

16. Bathich, K., A. Z. Markos, and G. Boeck, "Frequency response analysis and bandwidth extension of the Doherty amplifier," IEEE Trans. Microwave Theory and Techniques, Vol. 59, No. 4, 934-944, Apr. 2011.
doi:10.1109/TMTT.2010.2098040

17. Rubio, J. M., J. Fang, V. Camarchia, R. Quaglia, M. Pirola, and G. Ghione, "3-3.6-GHz wideband GaN Doherty power amplier exploiting output compensation stages," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 8, 2543-2548, Aug. 2012.
doi:10.1109/TMTT.2012.2201745

18. Gustafsson, D., J. C. Cahuana, D. Kuylenstierna, I. Angelov, N. Rorsman, and C. Fager, "A wideband and compact GaN MMIC Doherty amplifier for microwave link applications," IEEE Trans. Microwave Theory and Techniques, Vol. 61, No. 2, 922-930, Feb. 2013.
doi:10.1109/TMTT.2012.2231421

19. Sun, G. and R. H. Jansen, "Broadband Doherty power amplifier via real frequency technique," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 1, 99-111, Jan. 2012.
doi:10.1109/TMTT.2011.2175237

20. Wu, D. Y.-T. and S. Boumaiza, "A modified Doherty configuration for broadband amplification using symmetrical devices," IEEE Trans. Microwave Theory and Techniques, Vol. 60, No. 10, 3201-3212, Oct. 2012.
doi:10.1109/TMTT.2012.2209446

21. Giofre, R., P. Colantonio, F. Giannini, and L. Piazzon, "New output combiner for Doherty amplifiers," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 1, 31-33, Jan. 2013.
doi:10.1109/LMWC.2012.2236308

22. Giofre, R., P. Colantonio, F. Giannini, and L. Piazzon, "A Doherty amplifier with maximally flat efficiency in the bandwidth," IEEE Proc. Int. Microwave Symposium, 1-3, Seattle, WA, Jun. 2013.

23. Levy, R. and L. F. Lind, "Synthesis of symmetrical branch-guide directional couplers," IEEE Trans. Microwave Theory and Techniques, Vol. 16, No. 2, 80-89, Feb. 1968.
doi:10.1109/TMTT.1968.1126612

24. Muraguchi, M., T. Yukitake, and Y. Naito, "Synthesis of symmetrical branch-guide directional couplers," IEEE Trans. Microwave Theory and Techniques, Vol. 31, No. 8, 674-678, Aug. 1983.
doi:10.1109/TMTT.1983.1131568

25. Kumar, S., C. Tannous, and T. Danshin, "A multisection broadband impedance transforming branch-line hybrid," IEEE Trans. Microwave Theory and Techniques, Vol. 43, No. 11, 2517-2523, Nov. 1995.
doi:10.1109/22.473172

26. Bonney, J. and J. Schoebel, "Synthesis of extremely at broadband multi-section quadrature coupler," Proc. German Microwave Conference, 1-4, 2008.

27. Colantonio, P., F. Giannini, R. Giofrµe, and L. Piazzon, "The AB-C Doherty power amplifier. Part I: Theory," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 19, No. 3, 293-306, May 2009.
doi:10.1002/mmce.20350

28. Fano, R. M., "Theoretical limitations on the broadband matching of arbitrary impedances," J. Franklin Inst., Vol. 249, 57-83, Jan. 1950.
doi:10.1016/0016-0032(50)90006-8

29. Bode, H. W., "Network Analysis and Feedback Amplifier Design,", 276-282, Van Nostrand, 1975.

30. Matthaei, G., L. Young, and E. M. T. Jones, Microwave Filters, Impedance-matching Networks, and Coupling Structures, 120-130, McGraw-Hill, 1980.

31. ripps, S. C., RF Power Amplifiers for Wireless Communications, 20-43, Artech House, 1999.

32. Colantonio, P., F. Giannini, and E. Limiti, High E±ciency RF and Microwave Solid State Power Amplifiers, 160-176, John Wiley & Sons, 2009.
doi:10.1002/9780470746547

33. Chun, Y.-H. and J.-S. Hong, "Compact wide-band branch-line hybrids," IEEE Trans. Microwave Theory and Techniques, Vol. 54, No. 2, 704-709, Feb. 2006.
doi:10.1109/TMTT.2005.862657

34. Liou, C.-Y., M.-S. Wu, J.-C. Yeh, Y.-Z. Chueh, and S.-G. Mao, "A novel triple-band microstrip branch-line coupler with arbitrary operating frequencies," IEEE Microwave and Wireless Components Letters, Vol. 19, No. 11, 683-685, Nov. 2009.
doi:10.1109/LMWC.2009.2031998

35. Piazzon, L., P. Saad, P. Colantonio, F. Giannini, K. Andersson, and C. Fager, "Branch-line coupler design operating in four arbitrary frequencies," IEEE Microwave and Wireless Components Letters, Vol. 22, No. 2, 67-69, Feb. 2012.
doi:10.1109/LMWC.2011.2181349

36. Piazzon, L., R. Giofrµe, P. Colantonio, and F. Giannini, "A wideband Doherty architecture with 36% of fractional bandwidth," IEEE Microwave and Wireless Components Letters, Vol. 23, No. 11, 626-628, 2013.
doi:10.1109/LMWC.2013.2281413


© Copyright 2014 EMW Publishing. All Rights Reserved