PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 145 > pp. 263-272

DUAL-BAND CIRCULAR POLARIZER AND LINEAR POLARIZATION TRANSFORMER BASED ON TWISTED SPLIT-RING STRUCTURE ASYMMETRIC CHIRAL METAMATERIAL

By Y. Cheng, Y. Nie, Z. Cheng, and R. Z. Gong

Full Article PDF (741 KB)

Abstract:
In this paper, a bi-layer twisted split-ring structure asymmetric chiral metamaterial was proposed, which could achieve circularly polarized (giant circular dichroism effect) wave with dual bands and linear polarization transformation (giant optical activity)with asymmetric transmission wave emissions simultaneously from linearly polarized incident wave at microwave frequencies. Experiment and simulation calculations are in good agreement, indicating that the dual-band circular polarizer features high conversion efficiency around 5.32 GHz and 6.6 GHz in addition to large polarization extinction ratio of more than 16 dB, while cross linear polarization transformation with asymmetric transmission is observed around 10.52GHz. The transformation behavior for both circular and linear polarizations could be further illustrated by simulated surface current and electric field distributions. The proposed asymmetric chiral metamaterial structure could be useful in designing novel EM or optical devices, as well as polarization control devices.

Citation:
Y. Cheng, Y. Nie, Z. Cheng, and R. Z. Gong, "Dual-Band Circular Polarizer and Linear Polarization Transformer Based on Twisted Split-Ring Structure Asymmetric Chiral Metamaterial," Progress In Electromagnetics Research, Vol. 145, 263-272, 2014.
doi:10.2528/PIER14020501
http://www.jpier.org/PIER/pier.php?paper=14020501

References:
1. Tretyakov, S., I. Nefedov, A. Sihvola, S. Maslovski, and C. Simovski, "Waves and energy inchiral nihility," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 5, 695-706, 2003.
doi:10.1163/156939303322226356

2. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, No. 19, 1353-1355, 2004.
doi:10.1126/science.1104467

3. Jackson, J. D., Classical E Lectrodynamics, 3rd Ed., 205-207, Wiley, 1999.

4. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, No. 17, 177401, 2006.
doi:10.1103/PhysRevLett.97.177401

5. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, No. 3, 035407-6, 2009.
doi:10.1103/PhysRevB.79.035407

6. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, No. 12, 121104-4, 2009.
doi:10.1103/PhysRevB.79.121104

7. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four `U' split ring resonators," Appl. Phys. Lett., Vol. 97, No. 8, 081901-3, 2010.
doi:10.1063/1.3483612

8. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-239, 2013.
doi:10.2528/PIER13050601

9. Li, J., F.-Q. Yang, and J.-F. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.

10. Song, K., X.-P. Zhao, Q. H. Fu, Y. H. Liu, and W. R. Zhu, "Wide-angle 90o-polarization rotator using chiral metamaterial with negative refractive index," Journal of Electromagnetic Waves and Applications, Vol. 26, No. 14-15, 1967-1976, 2012.
doi:10.1080/09205071.2012.723673

11. Cheng, Y., Y. Nie, and R. Z. Gong, "Giant optical activity and negative refractive index using complementary U-shaped structure assembly," Progress In Electromagnetics Research M, Vol. 25, 239-253, 2012.
doi:10.2528/PIERM12070403

12. Decker, M., M. W. Klein, M.Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett., Vol. 32, No. 7, 856-858, 2007.
doi:10.1364/OL.32.000856

13. Gansel, J., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M.Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513-1515, 2009.
doi:10.1126/science.1177031

14. Zhao, Y., M. A. Belkin, and A. Alu, "Twisted optical metamaterials for planarized ultrathin broadband circular polarizers," Nat. Commun., Vol. 3, 870, 2012.
doi:10.1038/ncomms1877

15. Cheng, Y., Y. Nie, L. Wu, and R. Z. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 421-432, 2013.
doi:10.2528/PIER13011202

16. Menzel, C., C. Helgert, C. Rockstuhl, E.-B. Kley, A. Taunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.
doi:10.1103/PhysRevLett.104.253902

17. Wei, Z. , Y. Cao, Y. Fan, X. Yu, and H. Li, "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, No. 22, 221907-3, 2011.
doi:10.1063/1.3664774

18. Huang, C., Y. Feng, J. Zhao, Z. Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, 195131, 2012.
doi:10.1103/PhysRevB.85.195131

19. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling," Phys. Rev. Lett., Vol. 108, 213905, 2012.
doi:10.1103/PhysRevLett.108.213905

20. Cheng, Y. Z., Y. Nie, X. Wang, and R. Z. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys., A Mater. Sci. Process., Vol. 111, No. 1, 209-215, 2013.
doi:10.1007/s00339-013-7546-1

21. Cheng, Y., Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, "Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 14, 1850-1858, 2013.
doi:10.1080/09205071.2013.825891

22. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators," Opt. Lett., Vol. 36, No. 9, 1653-1655, 2011.
doi:10.1364/OL.36.001653

23. Ye, Y., X. Li, F. Zhuang, and S. W. Chang, "Homogeneous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 99, 031111, 2011.
doi:10.1063/1.3615054

24. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Opt. Express, Vol. 20, No. 14, 16050-16058, 2012.
doi:10.1364/OE.20.016050

25. Yana, S. and G. A. E. Vandenbosch, "Compact circular polarizer based on chiral twisted double split-ring resonator," Appl. Phys. Lett., Vol. 102, 103503, 2013.
doi:10.1063/1.4794940

26. Xie, L., H.-L. Yang, X. Huang, and Z. Li, "Multi-band circular polarizer using archimedean spiral structure chiral metamaterial with zero and negative refractive index," Progress In Electromagnetics Research, Vol. 141, 645-657, 2013.
doi:10.2528/PIER13063003

27. Xu, H.-X., G.-M. Wang, M.-Q. Qi, and T. Cai, "Dual-band circular polarizer and asymmetric spectrum filter using ultrathin compact chiral metamaterial," Progress In Electromagnetics Research, Vol. 143, 243-261, 2013.
doi:10.2528/PIER13093009

28. Cheng, Y. Z., Y. Nie, C. Z. Cheng, X. Wang, and R. Z. Gong, "Asymmetric chiral metamaterial circular polarizer based on twisted split-ring resonator," Appl. Phys. B, 2013, DOI 10.1007/s00340-013-5659-z.

29. Wu, L., Z. Y. Yang, Y. Z. Cheng, Z. Q. Lu, P. Zhang, M. Zhao, R. Z. Gong, X. H. Yuan, Y. Zheng, and J. A. Duan, "Electromagnetic manifestation of chirality in layer-by-layer chiral metamaterials," Opt. Express, Vol. 21, 5239-5246, 2013.
doi:10.1364/OE.21.005239

30. Wu, L., Z. Y. Yang, Y. Z. Cheng, M. Zhao, R. Z. Gong, Y. Zheng, J. A. Duan, and X. H. Yuan, "Giant asymmetric transmission of circular polarization in layer-by-layer chiral metamaterials," Appl. Phys. Lett., Vol. 103, 021903, 2013.
doi:10.1063/1.4813487

31. Wu, C., H. Li, X. Yu, F. Li, H. Chen, and C. T. Chan, "Metallic helix array as a broadband wave plate," Phys. Rev. Lett., Vol. 107, No. 17, 177401, 2011.
doi:10.1103/PhysRevLett.107.177401

32. Ma, X., C. Huang, M. Pu, W. Pan, Y. Wang, and X. Luo, "Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial," Appl. Phys. Exp., Vol. 6, 022001, 2013.
doi:10.7567/APEX.6.022001

33. Zhao, R., J. Zhou, T. Koschny, E. N. Economou, and C. M. Soukoulis, "Repulsive casimir force in chiral metamaterials," Phys. Rev. Lett., Vol. 103, No. 10, 103602, 2009.
doi:10.1103/PhysRevLett.103.103602

34. Zhao, R., T. Koschny, E. N. Economou, and C. M. Soukoulis, "Repulsive Casimir forces with finite-thickness slabs," Phys. Rev. B, Vol. 83, No. 7, 075108, 2011.
doi:10.1103/PhysRevB.83.075108

35. Liu, H., Y. M. Liu, T. Li, S. M. Wang, S. N. Zhu, and X. Zhang, "Coupled magnetic plasmons in metamaterials," Phys. Status Solidi B, Vol. 246, 1397, 2009.
doi:10.1002/pssb.200844414

36. Liu, N., H. Liu, S. Zhu, and H. Giessen, "Stereometamaterials," Nat. Photon., Vol. 3, 157, 2009.
doi:10.1038/nphoton.2009.4

37. Born, M. and E. Wolf, Principles of Optics, Cambridge University Press, 1999.
doi:10.1017/CBO9781139644181

38. Chen, C. Y., T. R. Tsai, C. L. Pan, and R. P. Pan, "Room temperature terahertz phase shifter based on magnetically controlled birefringence in liquid crystals," Appl. Phys. Lett., Vol. 83, 4497, 2003.
doi:10.1063/1.1631064

39. Yamada, I., K. Takano, M. Hangyo, M. Saito, and W. Watanabe, "Terahertz wire-grid polarizers with micrometer-pitch Al gratings," Opt. Lett., Vol. 34, 274, 2009.
doi:10.1364/OL.34.000274

40. Euler, M., V. Fusco, R. Cahill, and R. Dickie, "325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor," IEEE Trans. Antenn. Propag., Vol. 58, No. 7, 2457-2459, 2010.
doi:10.1109/TAP.2010.2048874

41. Zari, D., H. Oraizi, and M. Soleimani, "Improved performance of circularly polarized antenna using semi-planar chiral metamaterial covers," Progress In Electromagnetics Research, Vol. 123, 337-354, 2012.
doi:10.2528/PIER11110506

42. Shi, J. H., H. F. Ma, W. X. Jiang, and T. J. Cui, "Multiband stereometamaterial-based polarization spectral filter," Phys. Rev. B, Vol. 86, 035103, 2012.
doi:10.1103/PhysRevB.86.035103

43. Plum, E., X. X. Liu, V. A. Fedotov, Y. Chen, D. P. Tsai, and N. I. Zheludev, "Metamaterials: Optical activity without chirality," Phys. Rev. Lett., Vol. 102, No. 11, 113902-4, 2009.
doi:10.1103/PhysRevLett.102.113902

44. Feng, C., Z. B. Wang, S. Lee, J. Jiao, and L. Li, "Giant circular dichroism in extrinsic chiral metamaterials excited by off-normal incident laser beams," Opt. Communications, Vol. 285, 2750-2754, 2012.
doi:10.1016/j.optcom.2012.01.062


© Copyright 2014 EMW Publishing. All Rights Reserved