PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 145 > pp. 153-161

THE EFFECT OF ANTENNA INCIDENT FIELD DISTRIBUTION ON MICROWAVE TOMOGRAPHY RECONSTRUCTION

By N. Bayat and P. Mojabi

Full Article PDF (315 KB)

Abstract:
For microwave tomography applications, we show that the utilized incident field distribution can affect the achievable image quantitative accuracy and resolution. In particular, for the synthetic cases considered here, it is shown that the use of a focused incident field distribution within the imaging domain often results in either enhanced or equivalent image reconstruction as compared to the use of an omnidirectional incident field distribution.

Citation:
N. Bayat and P. Mojabi, "The Effect of Antenna Incident Field Distribution on Microwave Tomography Reconstruction," Progress In Electromagnetics Research, Vol. 145, 153-161, 2014.
doi:10.2528/PIER14021905
http://www.jpier.org/PIER/pier.php?paper=14021905

References:
1. Ostadrahimi, M., P. Mojabi, S. Noghanian, J. LoVetri, and L. Shafai, "A multiprobe-per-collector modulated scatterer technique for microwave tomography," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1445-1448, 2011.
doi:10.1109/LAWP.2011.2179110

2. Shea, J. D., P. Kosmas, S. C. Hagness, and B. D. V. Veen, "Three-dimensional microwave imaging of realistic numerical breast phantoms via a multiple-frequency inverse scattering technique," Medical Physics, Vol. 37, No. 8, 4210-4226, 2010.
doi:10.1118/1.3443569

3. Mojabi, P. and J. LoVetri, "A novel microwave tomography system using a rotatable conductive enclosure," IEEE Trans. Antennas Propag., Vol. 59, No. 5, 1597-1605, 2011.
doi:10.1109/TAP.2011.2123066

4. Okhmatovski, V., J. Aronsson, and L. Shafai, "A well-conditioned non-iterative approach to solution of the inverse problem," IEEE Trans. Antennas Propag., Vol. 60, No. 5, 2418-2430, 2012.
doi:10.1109/TAP.2012.2189703

5. Abubakar, A., T. M. Habashy, and P. M. Van den Berg, "Nonlinear inversion of multi-frequency microwave Fresnel data using the multiplicative regularized contrast source inversion Electromagnetics Research," Progress In, Vol. 62, 193-201, 2006.

6. Ostadrahimi, M., P. Mojabi, C. Gilmore, A. Zakaria, S. Noghanian, S. Pistorius, and J. LoVetri, "Analysis of incident field modeling and incident/scattered field calibration techniques in microwave tomography," IEEE Antennas Wireless Propag. Lett., Vol. 10, 900-903, 2011.
doi:10.1109/LAWP.2011.2166849

7. Abubakar, A., P. M. Van den Berg, and S. Y. Semenov, "Two- and three-dimensional algorithms for microwave imaging and inverse scattering," Journal of Electromagnetic Waves and Applications, Vol. 17, No. 2, 209-231, 2003.
doi:10.1163/156939303322235798

8. Habashy, T. M. and A. Abubakar, "A general framework for constraint minimization for the inversion of electromagnetic measurements," Progress In Electromagnetics Research, Vol. 46, 265-312, 2004.
doi:10.2528/PIER03100702

9. Meaney, P., K. Paulsen, J. Chang, M. Fanning, and A. Hartov, "Nonactive antenna compensation for fixed-array microwave imaging. II. Imaging results," IEEE Trans. Med. Imag., Vol. 18, No. 6, 508-518, 1999.
doi:10.1109/42.781016

10. Gilmore, C., A. Abubakar, W. Hu, T. Habashy, and P. Van den Berg, "Microwave biomedical data inversion using the finite-difference contrast source inversion method," IEEE Trans. Antennas Propag., Vol. 57, No. 5, 1528-1538, 2009.
doi:10.1109/TAP.2009.2016728

11. Bourqui, J., M. Campbell, T. Williams, and E. Fear, "Antenna evaluation for ultra-wideband microwave imaging," International Journal of Antennas and Propagation, Vol. 2010, 2010.

12. Bayat, N. and P. Mojabi, "On the effect of antenna illumination patterns on the accuracy and resolution of microwave tomography," IEEE APS/URSI, Jul. 2013.

13. Hansen, P. C., "Numerical tools for analysis and solution of Fredholm integral equations of the first kind," Inverse Probl., Vol. 8, No. 6, 849, 1992.
doi:10.1088/0266-5611/8/6/005

14. Hansen, P. C., M. E. Kilmer, and R. H. Kjeldsen, "Exploiting residual information in the parameter choice for discrete ill-posed problems," BIT Numerical Mathematics, Vol. 46, No. 1, 41-59, 2006.
doi:10.1007/s10543-006-0042-7

15. F., Caramanica and G. Oliveri, "An innovative multi-source strategy for enhancing the reconstruction capabilities of inverse scattering techniques," Progress In Electromagnetics Research, Vol. 101, 349-374, 2010.

16. Rubak, T., P. M. Meaney, P. Meincke, and K. D. Paulsen, "Nonlinear microwave imaging for breast-cancer screening using Gauss-Newton's method and the CGLS inversion algorithm," IEEE Trans. Antennas Propag., Vol. 55, No. 8, 2320-2331, Aug. 2007.
doi:10.1109/TAP.2007.901993

17. Semenov, S., R. Svenson, A. Bulyshev, A. Souvorov, A. Nazarov, Y. Sizov, V. Posukh, A. Pavlovsky, P. Repin, and G. Tatsis, "Spatial resolution of microwave tomography for detection of myocardial ischemia and infarction-experimental study on two-dimensional models," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 4, 538-544, Apr. 2000.
doi:10.1109/22.842025

18. Gilmore, C., P. Mojabi, A. Zakaria, M. Ostadrahimi, C. Kaye, S. Noghanian, L. Shafai, S. Pistorius, and J. LoVetri, "A wideband microwave tomography system with a novel frequency selection procedure," IEEE Transactions on Biomedical Engineering, Vol. 57, No. 4, 894-904, Apr. 2010.
doi:10.1109/TBME.2009.2036372

19. Abubakar, A., P. M. Van den Berg, and J. J. Mallorqui, "Imaging of biomedical data using a multiplicative regularized contrast source inversion method," IEEE Trans. Microwave Theory Tech., Vol. 50, No. 7, 1761-1777, Jul. 2002.
doi:10.1109/TMTT.2002.800427

20. Grbic, A., L. Jiang, and R. Merlin, "Near-field plates: Subdiffraction focusing with patterned surfaces," Science, Vol. 320, No. 5875, 511-513, Apr. 2008.
doi:10.1126/science.1154753

21. Bourqui, J., M. Okoniewski, and E. Fear, "Balanced antipodal Vivaldi antenna with dielectric director for near-field microwave imaging," IEEE Trans. Antennas Propag., Vol. 58, No. 7, 2318-2326, Jul. 2010.
doi:10.1109/TAP.2010.2048844

22. Abubakar, , A., P. M. Van den Berg, S. Y. Semenov, "A robust iterative method for born inversion," IEEE Trans. Geosci. Remote Sensing, Vol. 42, No. 2, 342-354, Feb. 2004.
doi:10.1109/TGRS.2003.821062

23. Abubakar, A., T. M. Habashy, V. L. Druskin, L. Knizhnerman, and D. Alumbaugh, "2.5D forward and inverse modeling for interpreting low-frequency electromagnetic measurements," Geophysics, Vol. 73, No. 4, F165-F177, Jul.-Aug. 2008.
doi:10.1190/1.2937466

24. Mojabi, P. and J. LoVetri, "Microwave biomedical imaging using the multiplicative regularized Gauss-Newton inversion," IEEE Antennas Wireless Propag. Lett., Vol. 8, 645-648, 2009.
doi:10.1109/LAWP.2009.2023602

25. Mojabi, P., J. LoVetri, and L. Shafai, "A multiplicative regularized Gauss-Newton inversion for shape and location reconstruction," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4790-4802, 2011.
doi:10.1109/TAP.2011.2165487


© Copyright 2014 EMW Publishing. All Rights Reserved