PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 147 > pp. 69-79

LIGHT ABSORBER WITH AN ULTRA-BROAD FLAT BAND BASED ON MULTI-SIZED SLOW-WAVE HYPERBOLIC METAMATERIAL THIN-FILMS (Invited Paper)

By S. He, F. Ding, L. Mo, and F. Bao

Full Article PDF (695 KB)

Abstract:
Here we realize a broadband absorber by using a hyperbolic metamaterial composed of alternating aluminum-alumina thin films based on superposition of multiple slow-wave modes. Our super absorber ensures broadband and polarization-insensitive light absorption over almost the entire solar spectrum, near-infrared and short-wavelength infrared regime (500-2500 nm) with a simulated absorption of over 90%. The designed structure is fabricated and the measured results are given. This absorber yields an average measured absorption of 85% in the spectrum ranging from 500 nm to 2300 nm. The proposed absorbers open an avenue towards realizing thermal emission and energy-harvesting materials.

Citation:
S. He, F. Ding, L. Mo, and F. Bao, "Light Absorber with an Ultra-Broad Flat Band Based on Multi-Sized Slow-Wave Hyperbolic Metamaterial Thin-Films (Invited Paper)," Progress In Electromagnetics Research, Vol. 147, 69-79, 2014.
doi:10.2528/PIER14040306
http://www.jpier.org/PIER/pier.php?paper=14040306

References:
1. Watts, C. M., X. L. Liu, and W. J. Padilla, "Metamaterial electromagnetic wave absorbers," Adv. Mater., Vol. 24, OP98-OP120, 2012.

2. Kraemer, D., et al., "High-performance °at-panel solar thermoelectric generators with high thermal concentration," Nat. Mater., Vol. 10, 532-538, 2011.
doi:10.1038/nmat3013

3. Rephaeli, E. and S. H. Fan, "Absorber and emitter for solar thermo-photovoltaic systems to achieve efficiency exceeding the Shockley-Queisser limit," Opt. Express, Vol. 17, 15145-15159, 2009.
doi:10.1364/OE.17.015145

4. Teperik, T. V., et al., "Omnidirectional absorption in nanostructured metal surfaces," Nat. Photon., Vol. 2, 299-301, 2008.
doi:10.1038/nphoton.2008.76

5. Bonod, N., G. Tayeb, D. Maystre, S. Enoch, and E. Popov, "Total absorption of light by lamellar metallic strips," Opt. Express, Vol. 16, 15431-15438, 2008.
doi:10.1364/OE.16.015431

6. Kravets, V. G., F. Schedin, and A. N. Grigorenko, "Plasmonic blackbody: Almost complete absorption of light in nanostructured metallic coatings," Phys. Rev. B, Vol. 78, 205405, 2008.
doi:10.1103/PhysRevB.78.205405

7. Hibbins, A. P., et al., "Resonant absorption of electromagnetic fields by surface plasmons buried in a multilayered plasmonic nanostructure," Phys. Rev. B, Vol. 74, 073408, 2006.
doi:10.1103/PhysRevB.74.073408

8. Le Perchec, J., P. Quemerais, A. Barbara, and T. Lopez-Rios, "Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light," Phys. Rev. Lett., Vol. 100, 066408, 2008.
doi:10.1103/PhysRevLett.100.066408

9. White, J. S., et al., "Extraordinary optical absorption through subwavelength slits," Opt. Lett., Vol. 34, 686-688, 2009.
doi:10.1364/OL.34.000686

10. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "A perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

11. Tao, H., et al., "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, 7181-7188, 2008.
doi:10.1364/OE.16.007181

12. Liu, X. L., T. Starr, A. F. Starr, and W. J. Padilla, "Infrared spatial and frequency selective metamaterial with near-unity absorbance," Phys. Rev. Lett., Vol. 104, 207403, 2010.
doi:10.1103/PhysRevLett.104.207403

13. Liu, N., M. Mesch, T. Weiss, M. Hentschel, and H. Giessen, "Infrared perfect absorber and its application as plasmonic sensor," Nano Lett., Vol. 10, 2342-2348, 2010.
doi:10.1021/nl9041033

14. Ye, Y. Q., Y. Jin, and S. L. He, "Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime," J. Opt. Soc. Am. B, Vol. 27, 498-504, 2010.
doi:10.1364/JOSAB.27.000498

15. Liu, X. L., et al., "Taming the blackbody with infrared metamaterials as selective thermal emitters," Phys. Rev. Lett., Vol. 107, 045901, 2011.
doi:10.1103/PhysRevLett.107.045901

16. Cui, Y. X., et al., "A thin film broadband absorber based on multi-sized nanoantennas," Appl. Phys. Lett., Vol. 99, 253101, 2011.
doi:10.1063/1.3672002

17. Huang, L., et al., "Experimental demonstration of terahertz metamaterial absorbers with a broad and °at high absorption band," Opt. Lett., Vol. 37, 154-156, 2012.
doi:10.1364/OL.37.000154

18. Aydin, K., V. Ferry, R. M. Briggis, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nat. Commun., Vol. 2, 517, 2011.
doi:10.1038/ncomms1528

19. Kravets, V. G., S. Neubeck, and A. N. Grigorenko, "Plasmonic blackbody: Strong absorption of light by metal nanoparticles embedded in a dielectric matrix," Phys. Rev. B, Vol. 81, 165401, 2010.
doi:10.1103/PhysRevB.81.165401

20. Hedayati, M. K., et al., "Design of a perfect black absorber at visible frequencies using plasmonic metamaterials," Adv. Mater., Vol. 23, 5410-5414, 2011.
doi:10.1002/adma.201102646

21. Rephaeli, E. and S. H. Fan, "Tungsten black absorber for solar light with wide angular operation range," Appl. Phys. Lett., Vol. 92, 211107, 2008.
doi:10.1063/1.2936997

22. S¿ndergaard, T., et al., "Plasmonic black gold by adiabatic nanofocusing and absorption of light in ultra-sharp convex grooves," Nat. Commun., Vol. 3, 969, 2012.
doi:10.1038/ncomms1976

23. Cui, Y. X., et al., "Ultrabroadband light absorption by a sawtooth anisotropic metamaterial slab," Nano Lett., Vol. 12, 1443-1447, 2012.
doi:10.1021/nl204118h

24. Ding, F., Y. X. Cui, X. C. Ge, Y. Jin, and S. L. He, "Ultra-broadband microwave metamaterial absorber," Appl. Phys. Lett., Vol. 100, 103506, 2012.
doi:10.1063/1.3692178

25. Elser, J., R. Wangberg, V. A. Podolskiy, and E. E. Narimanov, "Nanowire metamaterials with extreme optical anisotropy," Appl. Phys. Lett.,, Vol. 89, 261102, 2006.
doi:10.1063/1.2422893

26. Palik, E. D., Handbook of Optical Constants of Solids, Academic Press, New York, 1998.

27. Born, M. and E. Wolf, Principle of Optics, 6th Ed., Macmillan, New York, 1964.

28. He, J. L. and S. L. He, "Slow propagation of electromagnetic waves in a dielectric slab waveguide with a left-handed material substrate," IEEE Microw. Wirel. Compon. Lett., Vol. 16, 96-98, 2006.
doi:10.1109/LMWC.2005.863190

29. He, S. L., Y. R. He, and Y. Jin, "Revealing the truth about `trapped rainbow' storage of light in metamaterials," Sci. Rep., Vol. 2, 583, 2012.


© Copyright 2014 EMW Publishing. All Rights Reserved