PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 150 > pp. 29-40

A WAVEGUIDE VERIFICATION STANDARD DESIGN PROCEDURE FOR THE MICROWAVE CHARACTERIZATION OF MAGNETIC MATERIALS

By B. R. Crowgey, J. Tang, E. J. Rothwell, B. Shanker, and L. C. Kempel

Full Article PDF (297 KB)

Abstract:
A waveguide standard is introduced for validation purposes on the measurement accuracy of electric and magnetic properties of materials at microwave frequencies. The standard acts as a surrogate material with both electric and magnetic properties and is useful for verifying systems designed to characterize engineered materials using the Nicolson-Ross-Weir technique. A genetic algorithm is used to optimize the all-metallic structure to produce a surrogate with both relative permittivity and permeability within a target range across S-band. A mode-matching approach allows the user to predict the material properties with high accuracy, and thus compensate for differences in geometry due to loose fabrication tolerances or limited availability of component parts. The mode-matching method also allows the user to design standards that may be used within other measurement bands. An example standard is characterized experimentally, the errors due to uncertainties in measured dimensions and to experimental repeatability are explored, and the usefulness of the standard as a verification tool is validated.

Citation:
B. R. Crowgey, J. Tang, E. J. Rothwell, B. Shanker, and L. C. Kempel, "A Waveguide Verification Standard Design Procedure for the Microwave Characterization of Magnetic Materials," Progress In Electromagnetics Research, Vol. 150, 29-40, 2015.
doi:10.2528/PIER14100504
http://www.jpier.org/PIER/pier.php?paper=14100504

References:
1. Dimiev, A., W. Lu, K. Zeller, B. Crowgey, L. C. Kempel, and J. M. Tour, "Low-loss, high-permittivity composites made from graphene nanoribbons," Applied Materials & Interfaces, Vol. 3, No. 12, 4657-4661, 2011.
doi:10.1021/am201071h

2. Shirakata, Y., N. Hidaka, M. Ishitsuka, A. Teramoto, and T. Ohmi, "High permeability and low loss Ni-Fe composite material for high-frequency applications," IEEE Trans. Magn., Vol. 44, No. 9, 2100-2106, 2008.
doi:10.1109/TMAG.2008.2001073

3. Verma, A., A. K. Saxena, and D. C. Dube, "Microwave permittivity and permeability of ferrite-polymer thick films," Journal of Magn. Magn. Mater., Vol. 263, 228-234, 2003.
doi:10.1016/S0304-8853(02)01569-X

4. Smith, F. C., "Effective permittivity of dielectric honeycombs," IEE Proc. Micro. Antennas Propag., Vol. 146, No. 1, 55-59, 1999.
doi:10.1049/ip-map:19990392

5. Kempel, L., B. Crowgey, and J. Xiao, "Radiation by conformal patch antennas on a magneto-dielectric, low-density material," 3rd Euro. Conf. on Antennas Propag., EuCAP, 2974-2976, 2009.

6. Damaskos, N. J., R. B. Mack, A. L. Maffett, W. Parmon, and P. L. Uslenghi, "The inverse problem for biaxial materials," IEEE Trans. Microwave Theory Tech., Vol. 32, No. 4, 400-405, 1984.
doi:10.1109/TMTT.1984.1132689

7. Rothwell, E. J., A. K. Temme, and B. R. Crowgey, "Pulse reflection from a dielectric discontinuity in a rectangular waveguide," Progress In Electromagnetics Research, Vol. 97, 11-25, 2009.
doi:10.2528/PIER09090905

8. Dudeck, K. E. and L. J. Buckly, "Dielectric material measurement of thin samples at millimeter wavelengths," IEEE Trans. Instrum. Meas., Vol. 4, No. 5, 723-725, 1992.
doi:10.1109/19.177352

9. Queffelec, P., M. Le Floc’h, and P. Gelin, "Non-reciprocal cell for the broad-band measurement of tensorial permeability of magnetized ferrites: Direct problem," IEEE Trans. Microwave Theory Tech., Vol. 47, No. 4, 1999.
doi:10.1109/22.754870

10. Lozano-Guerrero, A. J., F. J. Clemente-Fernandez, J. Monzo-Cabrera, J. L. Pedreno-Molina, and A. Diaz-Morcillo, "Precise evaluation of coaxial to waveguide transitions by means of inverse techniques," IEEE Trans. Microwave Theory Tech., Vol. 58, No. 1, 229-235, 2010.
doi:10.1109/TMTT.2009.2036408

11. Williams, D. F., J. C. M. Wang, and U. Arz, "An optimal vector-network-analyzer calibration method," IEEE Trans. Microwave Theory Tech., Vol. 51, No. 12, 2391-2401, 2003.
doi:10.1109/TMTT.2003.819211

12. StatistiCAL, National Institute of Standards and Technology (NIST), Boulder, CO, available online at http://www.nist.gov/pml/electromagnetics/related-software.cfm, last accessed Oct. 15, 2014.

13. Nicolson, A. M. and G. F. Ross, "Measurement of the intrinsic properties of materials by time-domain techniques," IEEE Trans. Instrum. Meas., Vol. 19, No. 4, 377-382, 1970.
doi:10.1109/TIM.1970.4313932

14. Weir, W. B., "Automatic measurement of complex dielectric constant and permeability at microwave frequencies," Proc. IEEE, Vol. 62, No. 1, 33-36, 1974.
doi:10.1109/PROC.1974.9382

15. Bogle, A., M. Havrilla, D. Nyquis, L. Kempel, and E. Rothwell, "Electromagnetic material characterization using a partially-filled rectangular waveguide," Journal of Electromagnetic Waves and Applications, Vol. 19, No. 10, 1291-1306, 2005.
doi:10.1163/156939305775525909

16. Lambert, K. M. and C. L. Kory, "Notch filter insert for rectangular waveguide as a reference standard for material characterization," NASA Tech Briefs: LEW-18137-1, GlennResearch Center, Cleveland, OH, 2006.

17. Fenner, R. A., E. J. Rothwell, and L. L. Frasch, "A comprehensive analysis of free-space and guided-wave techniques for extracting the permeability and permittivity of materials using reflection-only measurements," Radio Sci., Vol. 47, No. 1, 1004-1016, 2012.
doi:10.1029/2011RS004755

18. Havrilla, M. J. and D. P. Nyquist, "Electromagnetic characterization of layered materials via direct and de-embed methods," IEEE Trans. Instrum. Meas., Vol. 55, No. 1, 158-163, 2006.
doi:10.1109/TIM.2005.861249

19. Ihamouten, A., K. Chahine, V. Baltazart, G. Villain, and X. Derobert, "On variants of the frequency power law for the electromagnetic characterization of hydraulic concrete," IEEE Trans. Instrum. Meas., Vol. 60, No. 11, 3658-3668, 2011.
doi:10.1109/TIM.2011.2138210

20. Crowgey, B. R., "Rectangular waveguide material characterization: anisotropic property extraction and measurement validation,", Ph.D. Dissertation, Michigan State University, East Lansing, MI, 2013.

21. Lamecki, P. K., P. K. Kozakowski, and M. Mrozowski, "Multimode, multiparametric surrogate models for fast design of waveguide components," 33rd European Microwave Conference, 1369-1372, Munich, Germany, 2003.

22. Rothwell, E. J. and M. J. Cloud, Electromagnetics, 2nd Edition, CRC Press, Boca Raton, FL, 2008.

23. Castro, J., C. Morales, T. Weller, J. Wang, and H. Srikanth, "Synthesis and characterization of low-loss Fe3O4-PDMS magneto-dielectric polymer nanocomposites for RF applications," IEEE 15th Annual Wireless and Microwave Technology Conference (WAMICON), 1-5, Tampa, FL, Jun. 6, 2014.

24. Ouedraogo, R., "Topology optimization of metamaterials and applications to RF component design,", Ph.D. Dissertation, Michigan State University, East Lansing, MI, 2011.

25. Crowgey, B. R., O. Tuncer, J. Tang, E. J. Rothwell, B. Shanker, L. C. Kempel, and M. J. Havrilla, "Characterization of biaxial anisotropic material using a reduced aperture waveguide," IEEE Trans. Instrum. Meas., Vol. 62, No. 10, 2739-2750, 2013.
doi:10.1109/TIM.2013.2259752

26. Dester, G. D., E. J. Rothwell, and M. J. Havrilla, "Two-iris method for the electromagnetic characterization of conductor-backed absorbing materials using an open-ended waveguide probe," IEEE Trans. Instrum. Meas., Vol. 61, No. 4, 1037-1044, 2012.
doi:10.1109/TIM.2011.2174111

27. Dorey, S. P., M. J. Havrilla, L. L. Frasch, C. Choi, and E. J. Rothwell, "Stepped-waveguide material-characterization technique," IEEE Antennas Propag. Mag., Vol. 46, No. 1, 170-175, 2004.
doi:10.1109/MAP.2004.1296183

28. Harrington, R. F., Time-harmonic Electromagnetic Fields, John Wiley & Sons, Inc., New York, 2001.
doi:10.1109/9780470546710


© Copyright 2014 EMW Publishing. All Rights Reserved