1. Maxwell, J. C., "A dynamical theory of the electromagnetic field," Philosophical Transactions of the Royal Society of London, Vol. 155, 459-512, 1865.
doi:10.1098/rstl.1865.0008 Google Scholar
2. Kouyoumjian, R. G., "Asymptotic high-frequency methods," Proceedings of the IEEE, Vol. 53, No. 8, 864-876, Aug. 1965.
doi:10.1109/PROC.1965.4065 Google Scholar
3. Knott, E. F., "A progression of high-frequency RCS prediction techniques," Proceedings of the IEEE, Vol. 73, No. 2, 252-264, Feb. 1985.
doi:10.1109/PROC.1985.13137 Google Scholar
4. Harrington, R. F., Field Computation by Moment Methods, McMillan, New York, 1968.
5. Chew, W. C., J.-M. Jin, C.-C. Lu, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.
6. Rao, S. M., D. R. Wilton, and . W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-412, May 1982.
doi:10.1109/TAP.1982.1142818 Google Scholar
7. Glisson, A. W. and D. R. Wilton, "Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces," IEEE Trans. Antennas Propagat., Vol. 28, No. 5, 593-603, Sep. 1980.
doi:10.1109/TAP.1980.1142390 Google Scholar
8. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 40, No. 6, 634-641, Jun. 1992.
doi:10.1109/8.144597 Google Scholar
9. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128 Google Scholar
10. Chew, W. C., J.-M. Jin, C.-C. Lu, E. Michielssen, and J. Song, "Fast solution methods in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 533-543, 1997.
doi:10.1109/8.558669 Google Scholar
11. Burkholder, R. and J. F. Lee, "Fast dual MGS block-factorization algorithm for dense MoM matrices," IEEE Trans. Antennas Propagat., Vol. 52, No. 7, 1693-1699, 2004.
doi:10.1109/TAP.2004.831333 Google Scholar
12. Ozdemir, N. A. and J. F. Lee, "A low rank IE-QR algorithm for matrix compression in volume integral equations," IEEE Trans. Magn., Vol. 40, No. 2, 1017-1020, 2004.
doi:10.1109/TMAG.2004.824575 Google Scholar
13. Zhao, K., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Trans. Electromag. Compat., Vol. 47, No. 4, 763-773, 2005.
doi:10.1109/TEMC.2005.857898 Google Scholar
14. Laviada, J., R. Mittra, M. R. Pino, and F. Las-Heras, "On the convergence of the ACA," Microwave Opt. Technol. Lett., Vol. 51, No. 10, 2458-2460, 2009.
doi:10.1002/mop.24637 Google Scholar
15. Heldring, A., E. Ubeda, and J. M. Rius, "On the convergence of the ACA algorithm for radiation and scattering problems," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3806-3809, 2014.
doi:10.1109/TAP.2014.2316293 Google Scholar
16. Tamayo, J., A. Heldring, and J. Rius, "Multilevel adaptive cross approximation (MLACA)," IEEE Trans. Antennas Propagat., Vol. 59, No. 12, 4600-4608, 2011.
doi:10.1109/TAP.2011.2165476 Google Scholar
17. Schroder, A., H.-D. Bruns, and C. Schuster, "Fast evaluation of electromagnetic fields using a parallelized adaptive cross approximation," IEEE Trans. Antennas Propagat., Vol. 62, No. 5, 2818-2822, 2014.
doi:10.1109/TAP.2014.2303819 Google Scholar
18. Schroder, A., H.-D. Bruns, and C. Schuster, "A hybrid approach for rapid computation of two-dimensional," IEEE Trans. Antennas Propagat., Vol. 60, No. 12, 6058-6061, 2012.
doi:10.1109/TAP.2012.2209858 Google Scholar
19. Maaskant, R., R. Mittra, and A. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Antennas Propagat., Vol. 56, No. 11, 3440-3451, 2008.
doi:10.1109/TAP.2008.2005471 Google Scholar
20. Boag, A. and R. Mittra, "Complex multipole beam approach to electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 42, No. 3, 366-372, 1994.
doi:10.1109/8.280723 Google Scholar
21. Tap, K., P. H. Pathak, and R. J. Burkholder, "Complex source beam-moment method procedure for accelerating numerical integral equation solutions of radiation and scattering problems," IEEE Trans. Antennas Propagat., Vol. 62, No. 4, 2052-2062, 2014.
doi:10.1109/TAP.2014.2298536 Google Scholar
22. Canning, F. X., "The impedance matrix localization (IML) method for method of moment calculations," IEEE Antennas and Propagation Magazine, Vol. 32, 18-30, 1990.
doi:10.1109/74.80583 Google Scholar
23. Bleszynski, E., M. Bleszynski, and T. Jaroszewcz, "AIM: Adaptive integral method compression algorithm for solving large scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, 1225-1251, 1996.
doi:10.1029/96RS02504 Google Scholar
24. Michelsen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," IEEE Trans. Antennas Propagat., Vol. 44, No. 8, 1086-1093, Aug. 1996.
doi:10.1109/8.511816 Google Scholar
25. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equation," Microwave Opt. Technol. Lett., Vol. 36, No. 2, 95-100, Jan. 2003.
doi:10.1002/mop.10685 Google Scholar
26. Delgado, C., F. Catedra, and R. Mittra, "Application of the characteristic basis function method utilizing a class of basis and testing functions defined on NURBS patches," IEEE Trans. Antennas Propagat., Vol. 56, No. 3, 784-791, Mar. 2008.
doi:10.1109/TAP.2008.916935 Google Scholar
27. Matekovits, L., V. A. Laza, and G. Vecchi, "Analysis of large complex structures with the synthetic-functions approach," IEEE Trans. Antennas Propagat., Vol. 55, No. 9, 2509-2521, Sep. 2007.
doi:10.1109/TAP.2007.904073 Google Scholar
28. Delgado, C., R. Mittra, and F. Catedra, "Accurate representation of the edge behavior of current when using PO-derived characteristic basis functions," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 43-45, Mar. 2008.
doi:10.1109/LAWP.2008.915797 Google Scholar
29. Garcıa, E., C. Delgado, I. Gonzalez, and F. Catedra, "An iterative solution for electrically large problems combining the characteristic basis function method and the multilevel fast multipole algorithm," IEEE Trans. Antennas Propagat., Vol. 56, No. 8, 2363-2371, 2008.
doi:10.1109/TAP.2008.926781 Google Scholar
30. Blackford, L. S., J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, "ScaLAPACK Users’ Guide," SIAM, 1997. Google Scholar
31. Traff, J. L., W. D. Gropp, and R. Thakur, "Self-consistent MPI performance guidelines," IEEE Trans. Parallel and Distributed Systems, Vol. 21, No. 5, 698-709, May 2010.
doi:10.1109/TPDS.2009.120 Google Scholar
32. Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM, Philadelphia, 2003.
doi:10.1137/1.9780898718003
33. Van der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems," SIAM J. Sci. and Stat. Comput., Vol. 13, No. 2, 631-644, 1992.
doi:10.1137/0913035 Google Scholar
34. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. and Stat. Comput., Vol. 7, 856-869, 1986.
doi:10.1137/0907058 Google Scholar
35. Kharchenko, S. A. and A. Yu. Yeremin, "New GMRES(k)-type algorithms with explicit restarts and the analysis of their convergence properties based on matrix relations in QR form," Journal of Mathematical Sciences,, Vol. 114, No. 6, 2003.
doi:10.1023/A:1022470922964 Google Scholar
36. Canning, F. X. and J. F. Scholl, "Diagonal preconditioners for the EFIE using a wavelet basis," IEEE Trans. Antennas Propagat., Vol. 44, No. 9, 1239-1246, 1996.
doi:10.1109/8.535382 Google Scholar
37. Lee, J., C.-C. Lu, and J. Zhang, "Incomplete LU preconditioning for large scale dense complex linear systems from electromagnetic wave scattering problems," J. Comp. Phys., Vol. 185, 158-175, 2003.
doi:10.1016/S0021-9991(02)00052-9 Google Scholar
38. Kolotilina, L. Y., "Explicit preconditioning of systems of linear algebraic equations with dense matrices," Journal of Soviet Mathematics, Vol. 43, No. 4, 2566-2573, Nov. 1988.
doi:10.1007/BF01374987 Google Scholar
39. Carpentieri, B., I. S. Duff, L. Giraud, and G. Sylvand, "Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations," SIAM J. Sci. and Stat. Comput., Vol. 27, No. 3, 774-792, 2006.
doi:10.1137/040603917 Google Scholar
40. Benzi, M. and M. Tuma, "A comparative study of sparse approximate inverse preconditioners," Applied Numerical Mathematics: Transactions of IMACS, Vol. 30, No. 2-3, 305-340, 1999.
doi:10.1016/S0168-9274(98)00118-4 Google Scholar
41. Lee, J., C.-C. Lu, and J. Zhang, "Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 52, No. 9, 2277-2287, 2004.
doi:10.1109/TAP.2004.834084 Google Scholar
42. Chapman, B., G. Jost, and R. van der Pas, Using OpenMP: Portable Shared Memory Parallel Programming, MIT Press, Oct. 2007.
43. Lezar, E. and D. B. Davidson, "GPU-accelerated method of moments by example: Monostatic scattering," IEEE Antennas and Propagation Magazine, Vol. 52, No. 6, 120-135, 2010.
doi:10.1109/MAP.2010.5723240 Google Scholar
44. Pan, X. M., W. C. Pi, M. L. Yang, Z. Peng, and X. Q. Sheng, "Solving problems with over one billion unknowns by the MLFMA," IEEE Trans. Antennas Propagat., Vol. 60, No. 5, 2571-2574, 2012.
doi:10.1109/TAP.2012.2189746 Google Scholar
45. Ergul, O. and L. Gurel, "Accurate solutions of extremely large integralequation problems in computational electromagnetics," Proceedings of the IEEE, Vol. 101, No. 2, 342-349, 2013.
doi:10.1109/JPROC.2012.2204429 Google Scholar