PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 150 > pp. 109-121

AN OVERVIEW OF THE EVOLUTION OF METHOD OF MOMENTS TECHNIQUES IN MODERN EM SIMULATORS (Invited Paper)

By C. Delgado, E. Garcia, J. Moreno, I. Gonzalez-Diego, and M. F. Catedra

Full Article PDF (351 KB)

Abstract:
This paper presents an evolution of the challenges and solutions found in the application of techniques based on the Method of Moments until the present day. The original MoM presented very high computational restrictions that have motivated the development of more efficient approaches. The main features of these newer improvements are presented, as well as other technical details regarding preconditioning and parallelization techniques. Some representative examples are shown in order to assert the suitability of these approaches for the analysis of complex and realistic scenarios.

Citation:
C. Delgado, E. Garcia, J. Moreno, I. Gonzalez-Diego, and M. F. Catedra, "An Overview of the Evolution of Method of Moments Techniques in Modern EM Simulators (Invited Paper)," Progress In Electromagnetics Research, Vol. 150, 109-121, 2015.
doi:10.2528/PIER14121603
http://www.jpier.org/PIER/pier.php?paper=14121603

References:
1. Maxwell, J. C., "A dynamical theory of the electromagnetic field," Philosophical Transactions of the Royal Society of London, Vol. 155, 459-512, 1865.
doi:10.1098/rstl.1865.0008

2. Kouyoumjian, R. G., "Asymptotic high-frequency methods," Proceedings of the IEEE, Vol. 53, No. 8, 864-876, Aug. 1965.
doi:10.1109/PROC.1965.4065

3. Knott, E. F., "A progression of high-frequency RCS prediction techniques," Proceedings of the IEEE, Vol. 73, No. 2, 252-264, Feb. 1985.
doi:10.1109/PROC.1985.13137

4. Harrington, R. F., Field Computation by Moment Methods, McMillan, New York, 1968.

5. Chew, W. C., J.-M. Jin, C.-C. Lu, E. Michielssen, and J. Song, Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2001.

6. Rao, S. M., D. R. Wilton, and . W. Glisson, "Electromagnetic scattering by surfaces of arbitrary shape," IEEE Trans. Antennas Propagat., Vol. 30, No. 3, 409-412, May 1982.
doi:10.1109/TAP.1982.1142818

7. Glisson, A. W. and D. R. Wilton, "Simple and efficient numerical methods for problems of electromagnetic radiation and scattering from surfaces," IEEE Trans. Antennas Propagat., Vol. 28, No. 5, 593-603, Sep. 1980.
doi:10.1109/TAP.1980.1142390

8. Engheta, N., W. D. Murphy, V. Rokhlin, and M. S. Vassiliou, "The fast multipole method (FMM) for electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 40, No. 6, 634-641, Jun. 1992.
doi:10.1109/8.144597

9. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Antennas and Propagation Magazine, Vol. 35, No. 3, 7-12, Jun. 1993.
doi:10.1109/74.250128

10. Chew, W. C., J.-M. Jin, C.-C. Lu, E. Michielssen, and J. Song, "Fast solution methods in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 45, No. 3, 533-543, 1997.
doi:10.1109/8.558669

11. Burkholder, R. and J. F. Lee, "Fast dual MGS block-factorization algorithm for dense MoM matrices," IEEE Trans. Antennas Propagat., Vol. 52, No. 7, 1693-1699, 2004.
doi:10.1109/TAP.2004.831333

12. Ozdemir, N. A. and J. F. Lee, "A low rank IE-QR algorithm for matrix compression in volume integral equations," IEEE Trans. Magn., Vol. 40, No. 2, 1017-1020, 2004.
doi:10.1109/TMAG.2004.824575

13. Zhao, K., M. N. Vouvakis, and J.-F. Lee, "The adaptive cross approximation algorithm for accelerated method of moments computations of EMC problems," IEEE Trans. Electromag. Compat., Vol. 47, No. 4, 763-773, 2005.
doi:10.1109/TEMC.2005.857898

14. Laviada, J., R. Mittra, M. R. Pino, and F. Las-Heras, "On the convergence of the ACA," Microwave Opt. Technol. Lett., Vol. 51, No. 10, 2458-2460, 2009.
doi:10.1002/mop.24637

15. Heldring, A., E. Ubeda, and J. M. Rius, "On the convergence of the ACA algorithm for radiation and scattering problems," IEEE Trans. Antennas Propag., Vol. 62, No. 7, 3806-3809, 2014.
doi:10.1109/TAP.2014.2316293

16. Tamayo, J., A. Heldring, and J. Rius, "Multilevel adaptive cross approximation (MLACA)," IEEE Trans. Antennas Propagat., Vol. 59, No. 12, 4600-4608, 2011.
doi:10.1109/TAP.2011.2165476

17. Schroder, A., H.-D. Bruns, and C. Schuster, "Fast evaluation of electromagnetic fields using a parallelized adaptive cross approximation," IEEE Trans. Antennas Propagat., Vol. 62, No. 5, 2818-2822, 2014.
doi:10.1109/TAP.2014.2303819

18. Schroder, A., H.-D. Bruns, and C. Schuster, "A hybrid approach for rapid computation of two-dimensional," IEEE Trans. Antennas Propagat., Vol. 60, No. 12, 6058-6061, 2012.
doi:10.1109/TAP.2012.2209858

19. Maaskant, R., R. Mittra, and A. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Antennas Propagat., Vol. 56, No. 11, 3440-3451, 2008.
doi:10.1109/TAP.2008.2005471

20. Boag, A. and R. Mittra, "Complex multipole beam approach to electromagnetic scattering problems," IEEE Trans. Antennas Propagat., Vol. 42, No. 3, 366-372, 1994.
doi:10.1109/8.280723

21. Tap, K., P. H. Pathak, and R. J. Burkholder, "Complex source beam-moment method procedure for accelerating numerical integral equation solutions of radiation and scattering problems," IEEE Trans. Antennas Propagat., Vol. 62, No. 4, 2052-2062, 2014.
doi:10.1109/TAP.2014.2298536

22. Canning, F. X., "The impedance matrix localization (IML) method for method of moment calculations," IEEE Antennas and Propagation Magazine, Vol. 32, 18-30, 1990.
doi:10.1109/74.80583

23. Bleszynski, E., M. Bleszynski, and T. Jaroszewcz, "AIM: Adaptive integral method compression algorithm for solving large scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, 1225-1251, 1996.
doi:10.1029/96RS02504

24. Michelsen, E. and A. Boag, "A multilevel matrix decomposition algorithm for analyzing scattering from large structures," IEEE Trans. Antennas Propagat., Vol. 44, No. 8, 1086-1093, Aug. 1996.
doi:10.1109/8.511816

25. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equation," Microwave Opt. Technol. Lett., Vol. 36, No. 2, 95-100, Jan. 2003.
doi:10.1002/mop.10685

26. Delgado, C., F. Catedra, and R. Mittra, "Application of the characteristic basis function method utilizing a class of basis and testing functions defined on NURBS patches," IEEE Trans. Antennas Propagat., Vol. 56, No. 3, 784-791, Mar. 2008.
doi:10.1109/TAP.2008.916935

27. Matekovits, L., V. A. Laza, and G. Vecchi, "Analysis of large complex structures with the synthetic-functions approach," IEEE Trans. Antennas Propagat., Vol. 55, No. 9, 2509-2521, Sep. 2007.
doi:10.1109/TAP.2007.904073

28. Delgado, C., R. Mittra, and F. Catedra, "Accurate representation of the edge behavior of current when using PO-derived characteristic basis functions," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 43-45, Mar. 2008.
doi:10.1109/LAWP.2008.915797

29. Garcıa, E., C. Delgado, I. Gonzalez, and F. Catedra, "An iterative solution for electrically large problems combining the characteristic basis function method and the multilevel fast multipole algorithm," IEEE Trans. Antennas Propagat., Vol. 56, No. 8, 2363-2371, 2008.
doi:10.1109/TAP.2008.926781

30. Blackford, L. S., J. Choi, A. Cleary, E. D’Azevedo, J. Demmel, I. Dhillon, J. Dongarra, S. Hammarling, G. Henry, A. Petitet, K. Stanley, D. Walker, and R. C. Whaley, "ScaLAPACK Users’ Guide," SIAM, 1997.

31. Traff, J. L., W. D. Gropp, and R. Thakur, "Self-consistent MPI performance guidelines," IEEE Trans. Parallel and Distributed Systems, Vol. 21, No. 5, 698-709, May 2010.
doi:10.1109/TPDS.2009.120

32. Saad, Y., Iterative Methods for Sparse Linear Systems, 2nd Edition, SIAM, Philadelphia, 2003.
doi:10.1137/1.9780898718003

33. Van der Vorst, H. A., "Bi-CGSTAB: A fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems," SIAM J. Sci. and Stat. Comput., Vol. 13, No. 2, 631-644, 1992.
doi:10.1137/0913035

34. Saad, Y. and M. H. Schultz, "GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems," SIAM J. Sci. and Stat. Comput., Vol. 7, 856-869, 1986.
doi:10.1137/0907058

35. Kharchenko, S. A. and A. Yu. Yeremin, "New GMRES(k)-type algorithms with explicit restarts and the analysis of their convergence properties based on matrix relations in QR form," Journal of Mathematical Sciences,, Vol. 114, No. 6, 2003.
doi:10.1023/A:1022470922964

36. Canning, F. X. and J. F. Scholl, "Diagonal preconditioners for the EFIE using a wavelet basis," IEEE Trans. Antennas Propagat., Vol. 44, No. 9, 1239-1246, 1996.
doi:10.1109/8.535382

37. Lee, J., C.-C. Lu, and J. Zhang, "Incomplete LU preconditioning for large scale dense complex linear systems from electromagnetic wave scattering problems," J. Comp. Phys., Vol. 185, 158-175, 2003.
doi:10.1016/S0021-9991(02)00052-9

38. Kolotilina, L. Y., "Explicit preconditioning of systems of linear algebraic equations with dense matrices," Journal of Soviet Mathematics, Vol. 43, No. 4, 2566-2573, Nov. 1988.
doi:10.1007/BF01374987

39. Carpentieri, B., I. S. Duff, L. Giraud, and G. Sylvand, "Combining fast multipole techniques and an approximate inverse preconditioner for large electromagnetism calculations," SIAM J. Sci. and Stat. Comput., Vol. 27, No. 3, 774-792, 2006.
doi:10.1137/040603917

40. Benzi, M. and M. Tuma, "A comparative study of sparse approximate inverse preconditioners," Applied Numerical Mathematics: Transactions of IMACS, Vol. 30, No. 2-3, 305-340, 1999.
doi:10.1016/S0168-9274(98)00118-4

41. Lee, J., C.-C. Lu, and J. Zhang, "Sparse inverse preconditioning of multilevel fast multipole algorithm for hybrid integral equations in electromagnetics," IEEE Trans. Antennas Propagat., Vol. 52, No. 9, 2277-2287, 2004.
doi:10.1109/TAP.2004.834084

42. Chapman, B., G. Jost, and R. van der Pas, Using OpenMP: Portable Shared Memory Parallel Programming, MIT Press, Oct. 2007.

43. Lezar, E. and D. B. Davidson, "GPU-accelerated method of moments by example: Monostatic scattering," IEEE Antennas and Propagation Magazine, Vol. 52, No. 6, 120-135, 2010.
doi:10.1109/MAP.2010.5723240

44. Pan, X. M., W. C. Pi, M. L. Yang, Z. Peng, and X. Q. Sheng, "Solving problems with over one billion unknowns by the MLFMA," IEEE Trans. Antennas Propagat., Vol. 60, No. 5, 2571-2574, 2012.
doi:10.1109/TAP.2012.2189746

45. Ergul, O. and L. Gurel, "Accurate solutions of extremely large integralequation problems in computational electromagnetics," Proceedings of the IEEE, Vol. 101, No. 2, 342-349, 2013.
doi:10.1109/JPROC.2012.2204429


© Copyright 2014 EMW Publishing. All Rights Reserved