PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 152 > pp. 95-104

EXTREMELY SUB-WAVELENGTH NEGATIVE INDEX METAMATERIAL

By X. Zhang, E. Usi, S. K. Khan, M. Sadatgol, and D. O. Guney

Full Article PDF (1,092 KB)

Abstract:
We present an extremely sub-wavelength negative index metamaterial structure operating at radio frequency. The unit cell of the metamaterial consists of planar spiral and meandering wire structures separated by dielectric substrate. The ratio of the free space wavelength to unit cell size in the propagation direction is record breaking 1733 around the resonance frequency. The proposed metamaterial also possesses the most extreme refractive index of -109 that has been recorded to date. Underlying magnetic and electric response originate from the spiral and meandering wire, respectively. We show that the meandering wire is the key element to improve the transparency of the negative index metamaterial.

Citation:
X. Zhang, E. Usi, S. K. Khan, M. Sadatgol, and D. O. Guney, "Extremely Sub-Wavelength Negative Index Metamaterial," Progress In Electromagnetics Research, Vol. 152, 95-104, 2015.
doi:10.2528/PIER15061807
http://www.jpier.org/PIER/pier.php?paper=15061807

References:
1. Walser, R. M., "Electromagnetic metamaterials," Complex Mediums II: Beyond Linear Isotropic Dielectrics, A. Lakhtakia, W. S. Weiglhofer, and I. J. Hodgkinson, eds., Proc. SPIE, Vol. 4467, 1-15, 2001.

2. Cai, W. and V. Shalaev, Optical Metamaterials: Fundamentals and Applications, Academic, 2010.

3. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Usp., Vol. 10, 509-514, 1968.
doi:10.1070/PU1968v010n04ABEH003699

4. Pendry, J. B., "Negative refraction makes a perfect lens," Phys. Rev. Lett., Vol. 85, 3966, 2000.
doi:10.1103/PhysRevLett.85.3966

5. Jacob, Z., L. V. Alekseyev, and E. Narimanov, "Optical hyperlens: Far-field imaging beyond the diffraction limit," Opt. Express, Vol. 14, 8247-8256, 2006.
doi:10.1364/OE.14.008247

6. Liu, Z., H. Lee, Y. Xiong, C. Sun, and X. Zhang, "Far-field optical hyperlens magnifying sub-diffraction-limited objects," Science, Vol. 315, 1686, 2007.
doi:10.1126/science.1137368

7. Zhang, X. and Z. Liu, "Superlenses to overcome the diffraction limit," Nat. Mater., Vol. 7, 435-441, 2008.
doi:10.1038/nmat2141

8. Rho, J., Z. Ye, Y. Xiong, X. Yin, Z. Liu, H. Choi, G. Bartal, and X. Zhang, "Spherical hyperlens for two-dimensional sub-diffractional imaging at visible frequencies," Nat. Commun., Vol. 1, 143, 2010.
doi:10.1038/ncomms1148

9. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780-1782, 2006.
doi:10.1126/science.1125907

10. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777-1780, 2006.
doi:10.1126/science.1126493

11. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, 977-980, 2006.
doi:10.1126/science.1133628

12. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

13. Aydin, K., V. E. Ferry, R. M. Briggs, and H. A. Atwater, "Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers," Nature Commun., Vol. 2, 517, 2011.
doi:10.1038/ncomms1528

14. Guney, D. O. and D. A. Meyer, "Negative refraction gives rise to the Klein paradox," Phys. Rev. A, Vol. 79, 063834, 2009.
doi:10.1103/PhysRevA.79.063834

15. Smolyaninov, I. I. and E. E. Narimanov, "Metric signature transitions in optical metamaterials," Phys. Rev. Lett., Vol. 105, 067402, 2010.
doi:10.1103/PhysRevLett.105.067402

16. Bulu, I., H. Caglayan, K. Aydin, and E. Ozbay, "Compact size highly directive antennas based on the SRR metamaterial medium," New J. Phys., Vol. 7, 223, 2005.
doi:10.1088/1367-2630/7/1/223

17. Odabasi, H., F. Teixeira, and D. O. Guney, "Electrically small, complementary electric-field-coupled resonator antennas," J. Appl. Phys., Vol. 113, 084903, 2013.
doi:10.1063/1.4793090

18. Vora, A., J. Gwamuri, N. Pala, A. Kulkarni, J. M. Pearce, and D. O. Guney, "Exchanging ohmic losses in metamaterial absorbers with useful optical absorption for photovoltaics," Sci. Rep., Vol. 4, 4901, 2014.
doi:10.1038/srep04901

19. Aslam, M. I. and D. O. Guney, "On negative index metamaterial spacers and their unusual optical properties," Progress In Electromagnetics Research B, Vol. 47, 203-217, 2013.
doi:10.2528/PIERB12111908

20. Valentine, J., S. Zhang, T. Zentgraf, E. Ulin-Avila, D. A. Genov, G. Bartal, and X. Zhang, "Three-dimensional optical metamaterial with a negative refractive index," Nature, Vol. 455, 376-379, 2008.
doi:10.1038/nature07247

21. Guney, D. O., Th. Koschny, M. Kafesaki, and C. M. Soukoulis, "Connected bulk negative index photonic metamaterials," Opt. Lett., Vol. 34, 506-508, 2009.
doi:10.1364/OL.34.000506

22. Guney, D. O., Th. Koschny, and C. M. Soukoulis, "Intra-connected three-dimensionally isotropic bulk negative index photonic metamaterial," Opt. Express, Vol. 18, 12348-12353, 2010.
doi:10.1364/OE.18.012348

23. Garcia-Meca, C., J. Hurtado, J. Marti, A. Martinez, W. Dickson, and A. V. Zayats, "Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths," Phys. Rev. Lett., Vol. 106, 067402, 2011.
doi:10.1103/PhysRevLett.106.067402

24. Aslam, M. I. and D. O. Guney, "Surface plasmon driven scalable low-loss negative-index metamaterial in the visible spectrum," Phys. Rev. B, Vol. 84, 195465, 2011.
doi:10.1103/PhysRevB.84.195465

25. Aslam, M. I. and D. O. Guney, "Dual band double-negative polarization independent metamaterial for the visible spectrum," J. Opt. Soc. Am. B, Vol. 29, 2839-2847, 2012.
doi:10.1364/JOSAB.29.002839

26. Chen, W.-C., C. M. Bingham, K. M. Mak, N. W. Caira, and W. J. Padilla, "Extremely sub-wavelength planar magnetic metamaterials," Phys. Rev. B, Vol. 85, 201104, 2012.
doi:10.1103/PhysRevB.85.201104

27. Decker, M., I. Staude, I. I. Shishkin, K. B. Samusev, P. Parkinson, V. K. A. Sreenivasan, A. Minovich, A. E. Miroshnichenko, A. Zvyagin, C. Jagadish, D. N. Neshev, and Y. S. Kivshar, "Dual-channel spontaneous emission of quantum dots in magnetic metamaterials," Nat. Commun., Vol. 4, 2949, 2013.
doi:10.1038/ncomms3949

28. Plum, E., V. A. Fedotov, P. Kuo, D. P. Tsai, and N. I. Zheludev, "Towards the lasing spaser: Controlling metamaterial optical response with semiconductor quantum dots," Opt. Express, Vol. 17, 8548-8551, 2009.
doi:10.1364/OE.17.008548

29. Moritake, Y., K. Nakayama, T. Suzuki, H. Kurosawa, T. Kodama, S. Tomita, H. Yanagi, and T. Ishihara, "Lifetime reduction of a quantum emitter with quasiperiodic metamaterials," Phys. Rev. B, Vol. 90, 075146, 2014.
doi:10.1103/PhysRevB.90.075146

30. Benz, A., S. Campione, S. Liu, I. Montaño, J. F. Klem, A. Allerman, J. R.Wendt, M. B. Sinclair, F. Capolino, and I. Brener, "Strong coupling in the sub-wavelength limit using metamaterial nanocavities," Nat. Commun., Vol. 4, 2882, 2013.
doi:10.1038/ncomms3882

31. Guney, D. O. and D. A. Meyer, "Creation of entanglement and implementation of quantum logic gate operations using a three-dimensional photonic crystal single-mode cavity," J. Opt. Soc. Am. B, Vol. 24, 283-294, 2007.
doi:10.1364/JOSAB.24.000283

32. Guney, D. O. and D. A. Meyer, "Integrated conditional teleportation and readout circuit based on a photonic crystal single chip," J. Opt. Soc. Am. B, Vol. 24, 391-397, 2007.
doi:10.1364/JOSAB.24.000391

33. Brune, M., F. Schmidt-Kaler, A. Maali, J. Dreyer, E. Hagley, J. M. Raimond, and S. Haroche, "Quantum Rabi oscillation: A direct test of field quantization in a cavity," Phys. Rev. Lett., Vol. 76, 1800, 1996.
doi:10.1103/PhysRevLett.76.1800

34. Brune, M., E. Hagley, J. Dreyer, X. Maitre, A. Maali, C. Wunderlich, J. M. Raimond, and S. Haroche, "Observing the progressive decoherence of the ``meter'' in a quantum measurement," Phys. Rev. Lett., Vol. 77, 4887, 1996.
doi:10.1103/PhysRevLett.77.4887

35. Turchette, Q. A., D. Kielpinski, B. E. King, D. Leibfreid, D. M. Meekhof, C. J. Myatt, M. A. Rowe, C. A. Sackett, C. S. Wood, W. M. Itano, C. Monroe, and D. J. Wineland, "Heating of trapped ions from the ground state," Phys. Rev. A, Vol. 61, 063418, 2000.
doi:10.1103/PhysRevA.61.063418

36. Raimond, J. M., M. Brune, and S. Haroche, "Manipulating quantum entanglement with atoms and photons in a cavity," Rev. Mod. Phys., Vol. 73, 565, 2001.
doi:10.1103/RevModPhys.73.565

37. Vandersypen, L. M. K., M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L. Chuang, "Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance," Nature, Vol. 414, 883, 2001.
doi:10.1038/414883a

38. Kielpinski, D., C. Monroe, and D. J. Wineland, "Architecture for a large-scale ion-trap quantum computer," Nature, Vol. 417, 709, 2002.
doi:10.1038/nature00784

39. Vandersypen, L. M. K. and I. L. Chuang, "NMR techniques for quantum control and computation," Rev. Mod. Phys., Vol. 76, 1037, 2005.
doi:10.1103/RevModPhys.76.1037

40. Ospelkaus, C., U. Warring, Y. Colombe, K. R. Brown, J. M. Amini, D. Leibfreid, and D. J. Wineland, "Microwave quantum logic gates for trapped ions," Nature, Vol. 476, 181, 2011.
doi:10.1038/nature10290

41. Smith, D. R., S. Schultz, P. Markos, and C. M. Soukoulis, "Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients," Phys. Rev. B, Vol. 65, 195104, 2002.
doi:10.1103/PhysRevB.65.195104

42. Menzel, C., C. Rockstuhl, T. Paul, F. Lederer, and T. Pertsch, "Retrieving effective parameters for metamaterials at oblique incidence," Phys. Rev. B, Vol. 77, 195328, 2008.
doi:10.1103/PhysRevB.77.195328

43. Koschny, Th., P. Markos, E. N. Economou, D. R. Smith, D. C. Vier, and C. M. Soukoulis, "Impact of inherent periodic structure on effective medium description of left-handed and related metamaterials," Phys. Rev. B, Vol. 71, 245105, 2005.
doi:10.1103/PhysRevB.71.245105

44. Zhen, L., J. T. Jiang, W. Z. Shao, and C. Y. Xu, "Resonance-antiresonance electromagnetic behavior in a disordered dielectric composite," Appl. Phys. Lett., Vol. 90, 142907, 2007.
doi:10.1063/1.2719023

45. Smigaj, W. and B. Gralak, "Validity of the effective-medium approximation of photonic crystals," Phys. Rev. B, Vol. 77, 235445, 2008.
doi:10.1103/PhysRevB.77.235445

46. Tserkezis, C., "Effective parameters for periodic photonic structures of resonant elements," J. Phys: Condens. Matter, Vol. 21, 155404, 2009.
doi:10.1088/0953-8984/21/15/155404

47. Ludwig, A. and K. J. Webb, "Accuracy of effective medium parameter extraction procedures for optical metamaterials," Phys. Rev. B, Vol. 81, 113103, 2010.
doi:10.1103/PhysRevB.81.113103

48. Alu, A., "Restoring the physical meaning of metamaterial constitutive parameters,", arXiv:1012.1353, Submitted on Dec. 6, 2010.

49. Alu, A., "First-principles homogenization theory for periodic metamaterials," Phys. Rev. B, Vol. 84, 075153, 2011.
doi:10.1103/PhysRevB.84.075153

50. Kolb, P. W., T. S. Salter, J. A. McGee, H. D. Drew, and W. J. Padilla, "Extreme subwavelength electric GHz metamaterials," J. Appl. Phys., Vol. 110, 054906, 2011.
doi:10.1063/1.3633213

51. Erentok, A., R. W. Ziolkowski, J. A. Nielsen, R. B. Greegor, C. G. Parazzoli, M. H. Tanielian, S. A. Cummer, B. Popa, T. Hand, D. C. Vier, and S. Schultz, "Lumped element-based, highly sub-wavelength, negative index metamaterials at UHF frequencies," J. Appl. Phys., Vol. 104, 034901, 2008.
doi:10.1063/1.2959377

52. Choi, M., S. H. Lee, Y. Kim, S. B. Kang, J. Shin, M. H. Kwak, K.-Y. Kang, Y.-H. Lee, N. Park, and B. Min, "A terahertz metamaterial with unnaturally high refractive index," Nature, Vol. 470, 369-373, 2011.
doi:10.1038/nature09776

53. Zhang, X., S. Debnath, and D. O. Guney, "Hyperbolic metamaterial feasible for fabrication with direct laser writing processes," J. Opt. Soc. Am. B, Vol. 32, 1013-1021, 2015.
doi:10.1364/JOSAB.32.001013

54. Rill, M. S., C. Plet, M. Thiel, I. Staude, G. von Freymann, S. Linden, and M. Wegener, "Photonic metamaterials by direct laser writing and silver chemical vapour deposition," Nat. Mater., Vol. 7, 543-546, 2008.
doi:10.1038/nmat2197

55. Gansel, J. K., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M. Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, 1513-1515, 2009.
doi:10.1126/science.1177031

56. Rill, M. S., C. E. Kriegler, M. Thiel, G. von Freymann, S. Linden, and M. Wegener, "Negative-index bianisotropic photonic metamaterial fabricated by direct laser writing and silver shadow evaporation," Opt. Lett.,, Vol. 34, 19-21, 2009.
doi:10.1364/OL.34.000019

57. Guney, D. O., Th. Koschny, and C. M. Soukoulis, "Reducing ohmic losses in metamaterials by geometric tailoring," Phys. Rev. B, Vol. 80, 125129, 2009.
doi:10.1103/PhysRevB.80.125129

58. Zhang, S., W. Fan, K. J. Malloy, S. R. J. Brueck, N. C. Panoiu, and R. M. Osgood, "Near-infrared double negative metamaterials," Opt. Express, Vol. 13, 4922-4930, 2005.
doi:10.1364/OPEX.13.004922

59. Economou, E. N., Th. Koschny, and C. M. Soukoulis, "Strong diamagnetic response of in split-ringresonator metamaterials: Numerical study and two-loop model," Phys. Rev. B, Vol. 77, 092401, 2008.
doi:10.1103/PhysRevB.77.092401

60. Penciu, R. S., K. Aydin, M. Kafesaki, Th. Koschny, E. Ozbay, E. N. Economou, and C. M. Soukoulis, "Multi-gap individual and coupled split-ring resonator structures," Opt. Express, Vol. 16, 18131-18144, 2008.
doi:10.1364/OE.16.018131

61. Qin, G., J.-F. Wang, M.-B. Yan, W. Chen, H.-Y. Chen, and Y.-F. Li, "Lowering plasma frequency by enhancing the effective mass of electrons: A route to deep sub-wavelength metamaterials," Chin. Phys. B, Vol. 22, 087302, 2013.
doi:10.1088/1674-1056/22/8/087302


© Copyright 2014 EMW Publishing. All Rights Reserved