Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 154 > pp. 181-193


By S. Dehdashti, H. Wang, Y. Jiang, Z. Xu, and H. Chen

Full Article PDF (453 KB)

Realizations of celestial objects in the laboratory have been a tantalizing subject for human beings over centuries. In this paper, we review some of the interesting cases of realizations of black holes in the laboratory. We first review the recent progress in observed black holes realized through the isotropic coordinate transformation method, then discuss the realization of optical attractors. Finally, the Rindler space-time, as a one-dimensional black hole, by using the hyperbolic metamaterials, is discussed.

S. Dehdashti, H. Wang, Y. Jiang, Z. Xu, and H. Chen, "Review of Black Hole Realization in Laboratory Base on Transformation Optics (Invited Paper)," Progress In Electromagnetics Research, Vol. 154, 181-193, 2015.

1. Butterfielf, J. and J. Earman, Philosophy of Physics, Part A, Elsevier, North-Holland, 2007.

2. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.

3. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Mater., Vol. 9, 205, 2010.

4. Schuller, J. A., E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nature Mater., Vol. 9, 193, 2010.

5. Pendry, J. B., "Controlling light on the nanoscale (invited review)," Progress In Electromagnetics Research, Vol. 147, 117-126, 2014.

6. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell's equations," Journal of Modern Optics, Vol. 43, 773, 1996.

7. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Optics Express, Vol. 14, 9794, 2006.

8. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.

9. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777, 2006.

10. Sheng, C., H. Liu, Y.Wang, S. N. Zhu, and D. A. Genov, "Trapping light by mimicking gravitational lensing," Nat. Photonics., Vol. 7, 902, 2013.

11. Genov, D. A., "Optical black-hole analogues," Nat. Photonics., Vol. 5, 76, 2011.

12. Reznik, B., "Origin of the thermal radiation in a solid-state analogue of a black hole," Phys. Rev. D, Vol. 62, 044044, 2000.

13. Smolyaninov, I. and Y. J. Hung, "Modeling of time with metamaterials," J. Opt. Soc. Am. B, Vol. 28, 1591, 2011.

14. Smolyaninov, I. and E. E. Narimanov, "Metric signature transitions in optical metamaterials," Phys. Rev. Lett., Vol. 105, 067402, 2010.

15. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 655-686(22), 1999.

16. Chang, Z. and G. Hu, "Elastic wave omnidirectional absorbers designed by transformation method," Applied Phys. Lett., Vol. 101, 054102, 2012.

17. Leonhardt, U. and T. G. Philbin, "General relativity in electrical engineering," New J. Phys., Vol. 8, 247, 2006.

18. Odabasi, H., F. L. Teixeira, and W. C. Chew, "Impedance-matched absorbers and optical pseudo black holes," J. Opt. Soc. Am. B, Vol. 5, 1317, 2011.

19. Lu, W., J. Jin, Z. Lin, and H. Chen, "A simple design of an artificial electromagnetic black hole," J. App. Phys., Vol. 108, 064517, 2010.

20. Cheng, Q., T. J. Cui, W. X. Jiang, and B. G. Cai, "An omnidirectional electromagnetic absorber made of metamaterials," New J. Phys., Vol. 12, 063006, 2010.

21. Argyropoulos, C., E. Kallos, and Y. Hao, "FDTD analysis of the optical black hole," J. Opt. Soc. Am. B, Vol. 10, 2020, 2010.

22. Wang, H.-W. and L.-W. Chen, "Wide-angle absorber achieved by optical black holes using graded index photonic crystals," J. Opt. Soc. Am. B, Vol. 8, 2222, 2012.

23. Narimanov, E. E. and A. V. Kildishev, "Optical black hole: Broadband omnidirectional light absorber," Applied Phys. Lett., Vol. 95, 041106, 2009.

24. Lee, Y. Y., E. S. Kang, K. H. Jung, J. W. Lee, and D. Ahn, "Elliptic cylindrical pseudo-optical black hole for omnidirectional light absorber," J. Opt. Soc. Am. B, Vol. 8, 1948, 2014.

25. Prokopeva, L. J., E. E. Narimanov, and A. V. Kildishev, "Elliptic cylindrical pseudo-optical black hole for omnidirectional light absorber: Comment," J. Opt. Soc. Am. B, Vol. 4, 719, 2015.

26. Kildishev, A. V., L. J. Prokopeva, and E. E. Narimanov, "Cylinder light concentrator and absorber: Theoretical description," Opt. Express, Vol. 18, 16646, 2010.

27. Qiu, J., J. Y. Tan, L. H. Liu, and P.-F. Hsu, "Infrared radiative properties of two-dimensional square optical black holes," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 112, 2584, 2011.

28. Mackay, T. G. and A. Lakhtakia, "Towards a metamaterial simulation of a spinning cosmic string," Phys. Lett. A, Vol. 374, 2305, 2010.

29. Chen, H., R.-X. Miao, and M. Li, "Transformation optics that mimics the system outside a Schwarzschild black hole," Opt. Exp., Vol. 14, 15183, 2010.

30. Genov, D. A., S. Zhang, and X. Zhang, "Mimicking celestial mechanics in metamaterials," Nat. Phys., Vol. 5, 687, 2009.

31. Khorasani, S. and B. Rashidian, "Optical anisotropy of schwarzschild metric within equivalent medium framework," Optics Communications, Vol. 283, 1222, 2010.

32. Nerkararyan, K. V., S. K. Nerkararyan, and S. I. Bozhevolnyi, "Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons," Opt. Lett., Vol. 22, 4311, 2011.

33. Qiu, J., J. Y. Tan, L. H. Liu, and P.-F. Hsu, "Radiative properties of optical board embedded with optical black holes," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 112, 832, 2011.

34. Mackay, T. G. and A. Lakhtakia, "Towards a realization of Schwarzschild-(anti-)de Sitter spacetime as a particulate metamaterial," Phys. Rev. B, Vol. 83, 195424, 2011.

35. Smolyaninov, I. I., "Virtual black holes in hyperbolic metamaterials,", Arxive: 1101.4625, 2011.

36. Zhang, Y.-L., X.-Z. Dong, M.-L. Zheng, Z.-S. Zhao, and X.-M. Duan, "Steering electromagnetic beams with conical curvature singularities," Opt. Lett., Vol. 40, 4784, 2015.

37. Boston, B. R., "Time travel in transformation optics: Metamaterials with closed null geodesics," Phys. Rev. D., Vol. 91, 124035, 2015.

38. Smolyaninov, I., "Hyperbolic metamaterials,", arXive: 1510.07137, 2015.

39. Smolyaninov, I., E. Hwang, and E. E. Narimanov, "Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions," Phys. Rev. D, Vol. 85, 235122, 2012.

40. Smolyaninov, I., "Surface plasmon toy model of a rotating black hole," New J. Phys., Vol. 5, 147, 2003.

41. Smolyaninov, I., "Critical opalescence in hyperbolic metamaterials," J. Opt., Vol. 13, 125101, 2011.

42. Smolyaninov, I., E. Hwang, and E. Narimanov, "Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions," Phys. Rev. B, Vol. 85, 235122, 2012.

43. Smolyaninov, I. and Y. Hung, "Minkowski domain walls in hyperbolic metamaterials," Phys. Lett. A, Vol. 373, 353, 2013.

44. Smolyaninov, I., "Quantum electromagnetic black holes in a strong magnetic field," J. Phys. G: Nucl. Part. Phys., Vol. 40, 015005, 2013.

45. Smolyaninov, I., Y. Hung, and E. Hwang, "Experimental modeling of cosmological inflation with metamaterials," Phys. Lett. A, Vol. 376, 2575, 2012.

46. Kinsler, P. and M. W. McCall, "The futures of transformations and metamaterials," Photon. Nanostruct. Fundam. Appl., Vol. 15, 10, 2015.

47. McCall, M. W., A. Favaro, P. Kinsler, and A. Boardman, "A spacetime cloak, or a history editor," J. Opt., Vol. 13, 024003, 2011.

48. Kinsler, P. and M. W. McCall, "Transformation devices: carpets in space and space-time," Phys. Rev. A, Vol. 81, 063818, 2014.

49. Halimeh, J. C., R. T. Thompson, and M. Wegener, "Invisibility cloaks in relativistic motion,", arXive: 1510.06144, 2015.

50. Susskind, L. and J. Lindesay, An Introduction to Black Holes, Information and the String Theory Revolution, World Scientific, Singapore, 2005.

51. Leonhardt, U., "On cosmology in the laboratory," Phil. Trans. R. Soc. A, Vol. 373, 20140354, 2015.

52. Faccio, D., F. Belgiorno, S. Cacciatori, V. Gorini, S. Liberati, and U. Moschella, Analogue Gravity Phenomenology: Analogue Spacetimes and Horizons, from Theory to Experiment, Springer, Switzerland, 2013.

53. Gron, O. and S. Hervik, Einsteins General Theory of Relativity, Springer, New York, 2007.

54. Leonhardt, U. and T. G. Philbin, Geometry and Light: The Science of Invisibility, Dover, Mineola, NY, 2010.

55. Misner, C. W., K. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman and Company, New York, 1973.

56. Landau, L. and E. M. Lifshitz, The Classical Theory of Fields, Elsevier, Oxford, 2000.

57. Padmanabhan, T., Gravitation, Cambridge University Press, Cambridge, 2010.

58. Kaliteevski, M. A., R. A. Abram, V. V. Nikolaev, and G. S. Sololovski, "Bragg reflectors for cylindrical waves," J. Mod. Opt., Vol. 46, 875, 1999.

59. Zimmermann, E., R. Dandliker, and N. Souli, "Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach," J. Opt. Soc. Am., Vol. 12, 398, 1995.

60. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.

61. Landau, L. and E. Lifshitz, Electrodynamics of Continuous Media, Elsevier, Oxford, 2004.

62. Dehdashti, S., R. Roknizadeh, and A. Mahdifar, "Analogue special and general relativity by optical multilayer thin films: the Rindler space case," J. Mod. Opt., Vol. 60, 233, 2013.

© Copyright 2014 EMW Publishing. All Rights Reserved