Vol. 154
Latest Volume
All Volumes
PIER 179 [2024] PIER 178 [2023] PIER 177 [2023] PIER 176 [2023] PIER 175 [2022] PIER 174 [2022] PIER 173 [2022] PIER 172 [2021] PIER 171 [2021] PIER 170 [2021] PIER 169 [2020] PIER 168 [2020] PIER 167 [2020] PIER 166 [2019] PIER 165 [2019] PIER 164 [2019] PIER 163 [2018] PIER 162 [2018] PIER 161 [2018] PIER 160 [2017] PIER 159 [2017] PIER 158 [2017] PIER 157 [2016] PIER 156 [2016] PIER 155 [2016] PIER 154 [2015] PIER 153 [2015] PIER 152 [2015] PIER 151 [2015] PIER 150 [2015] PIER 149 [2014] PIER 148 [2014] PIER 147 [2014] PIER 146 [2014] PIER 145 [2014] PIER 144 [2014] PIER 143 [2013] PIER 142 [2013] PIER 141 [2013] PIER 140 [2013] PIER 139 [2013] PIER 138 [2013] PIER 137 [2013] PIER 136 [2013] PIER 135 [2013] PIER 134 [2013] PIER 133 [2013] PIER 132 [2012] PIER 131 [2012] PIER 130 [2012] PIER 129 [2012] PIER 128 [2012] PIER 127 [2012] PIER 126 [2012] PIER 125 [2012] PIER 124 [2012] PIER 123 [2012] PIER 122 [2012] PIER 121 [2011] PIER 120 [2011] PIER 119 [2011] PIER 118 [2011] PIER 117 [2011] PIER 116 [2011] PIER 115 [2011] PIER 114 [2011] PIER 113 [2011] PIER 112 [2011] PIER 111 [2011] PIER 110 [2010] PIER 109 [2010] PIER 108 [2010] PIER 107 [2010] PIER 106 [2010] PIER 105 [2010] PIER 104 [2010] PIER 103 [2010] PIER 102 [2010] PIER 101 [2010] PIER 100 [2010] PIER 99 [2009] PIER 98 [2009] PIER 97 [2009] PIER 96 [2009] PIER 95 [2009] PIER 94 [2009] PIER 93 [2009] PIER 92 [2009] PIER 91 [2009] PIER 90 [2009] PIER 89 [2009] PIER 88 [2008] PIER 87 [2008] PIER 86 [2008] PIER 85 [2008] PIER 84 [2008] PIER 83 [2008] PIER 82 [2008] PIER 81 [2008] PIER 80 [2008] PIER 79 [2008] PIER 78 [2008] PIER 77 [2007] PIER 76 [2007] PIER 75 [2007] PIER 74 [2007] PIER 73 [2007] PIER 72 [2007] PIER 71 [2007] PIER 70 [2007] PIER 69 [2007] PIER 68 [2007] PIER 67 [2007] PIER 66 [2006] PIER 65 [2006] PIER 64 [2006] PIER 63 [2006] PIER 62 [2006] PIER 61 [2006] PIER 60 [2006] PIER 59 [2006] PIER 58 [2006] PIER 57 [2006] PIER 56 [2006] PIER 55 [2005] PIER 54 [2005] PIER 53 [2005] PIER 52 [2005] PIER 51 [2005] PIER 50 [2005] PIER 49 [2004] PIER 48 [2004] PIER 47 [2004] PIER 46 [2004] PIER 45 [2004] PIER 44 [2004] PIER 43 [2003] PIER 42 [2003] PIER 41 [2003] PIER 40 [2003] PIER 39 [2003] PIER 38 [2002] PIER 37 [2002] PIER 36 [2002] PIER 35 [2002] PIER 34 [2001] PIER 33 [2001] PIER 32 [2001] PIER 31 [2001] PIER 30 [2001] PIER 29 [2000] PIER 28 [2000] PIER 27 [2000] PIER 26 [2000] PIER 25 [2000] PIER 24 [1999] PIER 23 [1999] PIER 22 [1999] PIER 21 [1999] PIER 20 [1998] PIER 19 [1998] PIER 18 [1998] PIER 17 [1997] PIER 16 [1997] PIER 15 [1997] PIER 14 [1996] PIER 13 [1996] PIER 12 [1996] PIER 11 [1995] PIER 10 [1995] PIER 09 [1994] PIER 08 [1994] PIER 07 [1993] PIER 06 [1992] PIER 05 [1991] PIER 04 [1991] PIER 03 [1990] PIER 02 [1990] PIER 01 [1989]
2015-12-31
Review of Black Hole Realization in Laboratory Base on Transformation Optics (Invited Paper)
By
Progress In Electromagnetics Research, Vol. 154, 181-193, 2015
Abstract
Realizations of celestial objects in the laboratory have been a tantalizing subject for human beings over centuries. In this paper, we review some of the interesting cases of realizations of black holes in the laboratory. We first review the recent progress in observed black holes realized through the isotropic coordinate transformation method, then discuss the realization of optical attractors. Finally, the Rindler space-time, as a one-dimensional black hole, by using the hyperbolic metamaterials, is discussed.
Citation
Shahram Dehdashti, Huaping Wang, Yuyu Jiang, Zhiwei Xu, and Hongsheng Chen, "Review of Black Hole Realization in Laboratory Base on Transformation Optics (Invited Paper)," Progress In Electromagnetics Research, Vol. 154, 181-193, 2015.
doi:10.2528/PIER15112505
References

1. Butterfielf, J. and J. Earman, Philosophy of Physics, Part A, Elsevier, North-Holland, 2007.

2. Landy, N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, and W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, 207402, 2008.
doi:10.1103/PhysRevLett.100.207402

3. Atwater, H. A. and A. Polman, "Plasmonics for improved photovoltaic devices," Nature Mater., Vol. 9, 205, 2010.
doi:10.1038/nmat2629

4. Schuller, J. A., E. S. Barnard, W. Cai, Y. C. Jun, J. S. White, and M. L. Brongersma, "Plasmonics for extreme light concentration and manipulation," Nature Mater., Vol. 9, 193, 2010.
doi:10.1038/nmat2630

5. Pendry, J. B., "Controlling light on the nanoscale (invited review)," Progress In Electromagnetics Research, Vol. 147, 117-126, 2014.
doi:10.2528/PIER14090305

6. Ward, A. J. and J. B. Pendry, "Refraction and geometry in Maxwell's equations," Journal of Modern Optics, Vol. 43, 773, 1996.
doi:10.1080/09500349608232782

7. Schurig, D., J. B. Pendry, and D. R. Smith, "Calculation of material properties and ray tracing in transformation media," Optics Express, Vol. 14, 9794, 2006.
doi:10.1364/OE.14.009794

8. Pendry, J. B., D. Schurig, and D. R. Smith, "Controlling electromagnetic fields," Science, Vol. 312, 1780, 2006.
doi:10.1126/science.1125907

9. Leonhardt, U., "Optical conformal mapping," Science, Vol. 312, 1777, 2006.
doi:10.1126/science.1126493

10. Sheng, C., H. Liu, Y.Wang, S. N. Zhu, and D. A. Genov, "Trapping light by mimicking gravitational lensing," Nat. Photonics., Vol. 7, 902, 2013.
doi:10.1038/nphoton.2013.247

11. Genov, D. A., "Optical black-hole analogues," Nat. Photonics., Vol. 5, 76, 2011.
doi:10.1038/nphoton.2011.5

12. Reznik, B., "Origin of the thermal radiation in a solid-state analogue of a black hole," Phys. Rev. D, Vol. 62, 044044, 2000.
doi:10.1103/PhysRevD.62.044044

13. Smolyaninov, I. and Y. J. Hung, "Modeling of time with metamaterials," J. Opt. Soc. Am. B, Vol. 28, 1591, 2011.
doi:10.1364/JOSAB.28.001591

14. Smolyaninov, I. and E. E. Narimanov, "Metric signature transitions in optical metamaterials," Phys. Rev. Lett., Vol. 105, 067402, 2010.
doi:10.1103/PhysRevLett.105.067402

15. Teixeira, F. L. and W. C. Chew, "Differential forms, metrics, and the reflectionless absorption of electromagnetic waves," Journal of Electromagnetic Waves and Applications, Vol. 13, No. 5, 655-686(22), 1999.
doi:10.1163/156939399X01104

16. Chang, Z. and G. Hu, "Elastic wave omnidirectional absorbers designed by transformation method," Applied Phys. Lett., Vol. 101, 054102, 2012.
doi:10.1063/1.4740077

17. Leonhardt, U. and T. G. Philbin, "General relativity in electrical engineering," New J. Phys., Vol. 8, 247, 2006.
doi:10.1088/1367-2630/8/10/247

18. Odabasi, H., F. L. Teixeira, and W. C. Chew, "Impedance-matched absorbers and optical pseudo black holes," J. Opt. Soc. Am. B, Vol. 5, 1317, 2011.
doi:10.1364/JOSAB.28.001317

19. Lu, W., J. Jin, Z. Lin, and H. Chen, "A simple design of an artificial electromagnetic black hole," J. App. Phys., Vol. 108, 064517, 2010.
doi:10.1063/1.3485819

20. Cheng, Q., T. J. Cui, W. X. Jiang, and B. G. Cai, "An omnidirectional electromagnetic absorber made of metamaterials," New J. Phys., Vol. 12, 063006, 2010.
doi:10.1088/1367-2630/12/6/063006

21. Argyropoulos, C., E. Kallos, and Y. Hao, "FDTD analysis of the optical black hole," J. Opt. Soc. Am. B, Vol. 10, 2020, 2010.
doi:10.1364/JOSAB.27.002020

22. Wang, H.-W. and L.-W. Chen, "Wide-angle absorber achieved by optical black holes using graded index photonic crystals," J. Opt. Soc. Am. B, Vol. 8, 2222, 2012.
doi:10.1364/JOSAB.29.002222

23. Narimanov, E. E. and A. V. Kildishev, "Optical black hole: Broadband omnidirectional light absorber," Applied Phys. Lett., Vol. 95, 041106, 2009.
doi:10.1063/1.3184594

24. Lee, Y. Y., E. S. Kang, K. H. Jung, J. W. Lee, and D. Ahn, "Elliptic cylindrical pseudo-optical black hole for omnidirectional light absorber," J. Opt. Soc. Am. B, Vol. 8, 1948, 2014.
doi:10.1364/JOSAB.31.001948

25. Prokopeva, L. J., E. E. Narimanov, and A. V. Kildishev, "Elliptic cylindrical pseudo-optical black hole for omnidirectional light absorber: Comment," J. Opt. Soc. Am. B, Vol. 4, 719, 2015.
doi:10.1364/JOSAB.32.000719

26. Kildishev, A. V., L. J. Prokopeva, and E. E. Narimanov, "Cylinder light concentrator and absorber: Theoretical description," Opt. Express, Vol. 18, 16646, 2010.
doi:10.1364/OE.18.016646

27. Qiu, J., J. Y. Tan, L. H. Liu, and P.-F. Hsu, "Infrared radiative properties of two-dimensional square optical black holes," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 112, 2584, 2011.
doi:10.1016/j.jqsrt.2011.08.002

28. Mackay, T. G. and A. Lakhtakia, "Towards a metamaterial simulation of a spinning cosmic string," Phys. Lett. A, Vol. 374, 2305, 2010.
doi:10.1016/j.physleta.2010.03.061

29. Chen, H., R.-X. Miao, and M. Li, "Transformation optics that mimics the system outside a Schwarzschild black hole," Opt. Exp., Vol. 14, 15183, 2010.
doi:10.1364/OE.18.015183

30. Genov, D. A., S. Zhang, and X. Zhang, "Mimicking celestial mechanics in metamaterials," Nat. Phys., Vol. 5, 687, 2009.
doi:10.1038/nphys1338

31. Khorasani, S. and B. Rashidian, "Optical anisotropy of schwarzschild metric within equivalent medium framework," Optics Communications, Vol. 283, 1222, 2010.
doi:10.1016/j.optcom.2009.11.090

32. Nerkararyan, K. V., S. K. Nerkararyan, and S. I. Bozhevolnyi, "Plasmonic black-hole: broadband omnidirectional absorber of gap surface plasmons," Opt. Lett., Vol. 22, 4311, 2011.
doi:10.1364/OL.36.004311

33. Qiu, J., J. Y. Tan, L. H. Liu, and P.-F. Hsu, "Radiative properties of optical board embedded with optical black holes," Journal of Quantitative Spectroscopy & Radiative Transfer, Vol. 112, 832, 2011.
doi:10.1016/j.jqsrt.2010.10.017

34. Mackay, T. G. and A. Lakhtakia, "Towards a realization of Schwarzschild-(anti-)de Sitter spacetime as a particulate metamaterial," Phys. Rev. B, Vol. 83, 195424, 2011.
doi:10.1103/PhysRevB.83.195424

35. Smolyaninov, I. I., "Virtual black holes in hyperbolic metamaterials,", Arxive: 1101.4625, 2011.

36. Zhang, Y.-L., X.-Z. Dong, M.-L. Zheng, Z.-S. Zhao, and X.-M. Duan, "Steering electromagnetic beams with conical curvature singularities," Opt. Lett., Vol. 40, 4784, 2015.

37. Boston, B. R., "Time travel in transformation optics: Metamaterials with closed null geodesics," Phys. Rev. D., Vol. 91, 124035, 2015.
doi:10.1103/PhysRevD.91.124035

38. Smolyaninov, I., "Hyperbolic metamaterials,", arXive: 1510.07137, 2015.

39. Smolyaninov, I., E. Hwang, and E. E. Narimanov, "Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions," Phys. Rev. D, Vol. 85, 235122, 2012.
doi:10.1103/PhysRevB.85.235122

40. Smolyaninov, I., "Surface plasmon toy model of a rotating black hole," New J. Phys., Vol. 5, 147, 2003.
doi:10.1088/1367-2630/5/1/147

41. Smolyaninov, I., "Critical opalescence in hyperbolic metamaterials," J. Opt., Vol. 13, 125101, 2011.
doi:10.1088/2040-8978/13/12/125101

42. Smolyaninov, I., E. Hwang, and E. Narimanov, "Hyperbolic metamaterial interfaces: Hawking radiation from Rindler horizons and spacetime signature transitions," Phys. Rev. B, Vol. 85, 235122, 2012.
doi:10.1103/PhysRevB.85.235122

43. Smolyaninov, I. and Y. Hung, "Minkowski domain walls in hyperbolic metamaterials," Phys. Lett. A, Vol. 373, 353, 2013.
doi:10.1016/j.physleta.2012.11.056

44. Smolyaninov, I., "Quantum electromagnetic black holes in a strong magnetic field," J. Phys. G: Nucl. Part. Phys., Vol. 40, 015005, 2013.
doi:10.1088/0954-3899/40/1/015005

45. Smolyaninov, I., Y. Hung, and E. Hwang, "Experimental modeling of cosmological inflation with metamaterials," Phys. Lett. A, Vol. 376, 2575, 2012.
doi:10.1016/j.physleta.2012.07.010

46. Kinsler, P. and M. W. McCall, "The futures of transformations and metamaterials," Photon. Nanostruct. Fundam. Appl., Vol. 15, 10, 2015.
doi:10.1016/j.photonics.2015.04.005

47. McCall, M. W., A. Favaro, P. Kinsler, and A. Boardman, "A spacetime cloak, or a history editor," J. Opt., Vol. 13, 024003, 2011.
doi:10.1088/2040-8978/13/2/024003

48. Kinsler, P. and M. W. McCall, "Transformation devices: carpets in space and space-time," Phys. Rev. A, Vol. 81, 063818, 2014.
doi:10.1103/PhysRevA.89.063818

49. Halimeh, J. C., R. T. Thompson, and M. Wegener, "Invisibility cloaks in relativistic motion,", arXive: 1510.06144, 2015.

50. Susskind, L. and J. Lindesay, An Introduction to Black Holes, Information and the String Theory Revolution, World Scientific, Singapore, 2005.

51. Leonhardt, U., "On cosmology in the laboratory," Phil. Trans. R. Soc. A, Vol. 373, 20140354, 2015.
doi:10.1098/rsta.2014.0354

52. Faccio, D., F. Belgiorno, S. Cacciatori, V. Gorini, S. Liberati, and U. Moschella, Analogue Gravity Phenomenology: Analogue Spacetimes and Horizons, from Theory to Experiment, Springer, Switzerland, 2013.

53. Gron, O. and S. Hervik, Einsteins General Theory of Relativity, Springer, New York, 2007.
doi:10.1007/978-0-387-69200-5

54. Leonhardt, U. and T. G. Philbin, Geometry and Light: The Science of Invisibility, Dover, Mineola, NY, 2010.

55. Misner, C. W., K. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman and Company, New York, 1973.

56. Landau, L. and E. M. Lifshitz, The Classical Theory of Fields, Elsevier, Oxford, 2000.

57. Padmanabhan, T., Gravitation, Cambridge University Press, Cambridge, 2010.
doi:10.1017/CBO9780511807787

58. Kaliteevski, M. A., R. A. Abram, V. V. Nikolaev, and G. S. Sololovski, "Bragg reflectors for cylindrical waves," J. Mod. Opt., Vol. 46, 875, 1999.
doi:10.1080/09500349908231310

59. Zimmermann, E., R. Dandliker, and N. Souli, "Scattering of an off-axis Gaussian beam by a dielectric cylinder compared with a rigorous electromagnetic approach," J. Opt. Soc. Am., Vol. 12, 398, 1995.
doi:10.1364/JOSAA.12.000398

60. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, Wiley, New York, 1983.

61. Landau, L. and E. Lifshitz, Electrodynamics of Continuous Media, Elsevier, Oxford, 2004.

62. Dehdashti, S., R. Roknizadeh, and A. Mahdifar, "Analogue special and general relativity by optical multilayer thin films: the Rindler space case," J. Mod. Opt., Vol. 60, 233, 2013.
doi:10.1080/09500340.2013.769638