Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 155 > pp. 105-113


By Y. Cheng, C. Wu, Z. Z. Cheng, and R. Z. Gong

Full Article PDF (782 KB)

An ultra-compact chiral metamaterial (CMM) using triple-layer twisted split-ring resonators (TSRRs) structure was proposed, which can function as a multi-band circular polarizer. This ultra-compact structure can convert an incident linearly y-polarized (x-polarized) wave propagating along the -z (+z) direction to the transmitted left circularly polarized (LCP) waves at 7.28 GHz, 13.22 GHz and 15.49 GHz while the right circularly polarized (RCP) waves are at 9.48 GHz. In addition, the large polarization extinction ratio (PER) of more than 20 dB across four resonance frequencies can be achieved. The experiment results are in good agreement with the numerical simulation results. The surface current distributions of the structure are analyzed to illustrate this linear to circular polarization conversion. The unit cell structure is extremely small both in longitudinal and transverse directions. Good performances and compact design of this CMM suggest promising applications in circular polarizers that need to be integrated with other compact devices.

Y. Cheng, C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-Compact Multi-Band Chiral Metamaterial Circular Polarizer Based on Triple Twisted Split-Ring Resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.

1. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, No. 19, 1353-1355, 2004.

2. Rogacheva, A. V., V. A. Fedotov, A. S. Schwanecke, and N. I. Zheludev, "Giant gyrotropy due to electromagnetic-field coupling in a bilayered chiral structure," Phys. Rev. Lett., Vol. 97, No. 17, 177401, 2006.

3. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, No. 3, 035407(6, 2009.

4. Zhou, J., J. Dong, B. Wang, T. Koschny, M. Kafesaki, and C. M. Soukoulis, "Negative refractive index due to chirality," Phys. Rev. B, Vol. 79, No. 12, 121104(3), 2009.

5. Li, Z., R. Zhao, T. Koschny, M. Kafesaki, K. B. Alici, E. Colak, H. Caglayan, E. Ozbay, and C. M. Soukoulis, "Chiral metamaterials with negative refractive index based on four ``U" split ring resonators," Appl. Phys. Lett., Vol. 97, No. 8, 081901(2), 2010.

6. Cheng, Y., Y. Nie, and R. Z. Gong, "Giant optical activity and negative refractive index using complementary U-shaped structure assembly," Progress In Electromagnetics Research M, Vol. 25, 239-253, 2012.

7. Decker, M., M. W. Klein, M.Wegener, and S. Linden, "Circular dichroism of planar chiral magnetic metamaterials," Opt. Lett., Vol. 32, No. 7, 856-858, 2007.

8. Cheng, Y., Y. Nie, L. Wu, and R. Z. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 421-432, 2013.

9. Lee, S., Z. Wang, C. Feng, J. Jiao, A. Khan, and L. Li, "Circular dichroism in planar extrinsic chirality metamaterial at oblique incident beam," Opt. Commun., Vol. 309, 201-204, 2013.

10. Menzel, C., C. Helgert, C. Rockstuhl, E.-B. Kley, A. Taunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.

11. Wei, Z., Y. Cao, Y. Fan, X. Yu, and H. Li, "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, No. 22, 221907-3, 2011.

12. Huang, C., Y. Feng, J. Zhao, Z. Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, 195131, 2012.

13. Dincer, F., C. Sabah, M. Karaaslan, E. Unal, M. Bakir, and U. Erdiven, "Asymmetric transmission of linearly polarized waves and dynamically wave rotation using chiral metamaterial," Progress In Electromagnetics Research, Vol. 140, 227-239, 2013.

14. Cheng, Y. Z., Y. Nie, X. Wang, and R. Z. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys., A Mater. Sci. Process., Vol. 111, No. 1, 209-215, 2013.

15. Wu, L., Z. Yang, Y. Cheng, R. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, "Circular polarization converters based on bi-layered asymmetrical split ring metamaterials," Applied Physics A, Vol. 116, No. 2, 643-648, 2014.

16. Ma, X., C. Huang, M. Pu, W. Pan, Y. Wang, and X. Luo, "Circular dichroism and optical rotation in twisted Y-shaped chiral metamaterial," Appl. Phys. Exp., Vol. 6, 022001, 2013.

17. Jackson, J. D., Classical Electrodynamics, 3rd Ed., 205-207, Wiley, 1999.

18. Liu, N., H. Liu, S. Zhu, and H. Giessen, "Stereometamaterials," Nat. Photon., Vol. 3, 157-162, 2009.

19. Decker, M., R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Opt. Lett., Vol. 35, No. 2, 1593-1595, 2010.

20. Powell, D. A., K. Hannam, I. V. Shadrivov, and Y. S. Kivshar, "Near-field interaction of twisted split-ring resonators," Phys. Rev. B, Vol. 83, 235420, 2011.

21. Liu, M., D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, "Optical activity and coupling in twisted dimer meta-atoms," Appl. Phys. Lett., Vol. 100, 111114, 2012.

22. Li, Z., M. Mutlu, and E. Ozbay, "Chiral metamaterials: From optical activity and negative refractive index to asymmetric transmission," J. Opt., Vol. 15, 023001, 2013.

23. Li, M., L. Guo, and H. Yang, "Experimental and simulated study of dual-band chiral metamaterials with strong optical activity," Microwave and Optical Technology Letters, Vol. 56, No. 10, 2381-2385, 2014.

24. Hannam, K., D. A. Powell, I. V. Shadrivov, and Y. S. Kivshar, "Broadband chiral metamaterials with large optical activity," Phys. Rev. B, Vol. 89, 125105, 2014.

25. Zhao, Y., A. Belkin, and A. Alu, "Twisted optical metamaterials for planarized ultrathin broadband circular polarizers," Nat. Commun., Vol. 3, 870, 2012.

26. Chen, J. and A. Zhang, "A novel design of circularly polarized antenna based on metamaterial," International Journal of Electronics, Vol. 100, No. 6, 770-778, 2013.

27. Hong, Q., T. Wu, X. Zhu, R. Lu, and S. T. Wu, "Designs of wide-view and broadband circular polarizers," Opt. Express, Vol. 13, No. 20, 8318-8331, 2005.

28. Ge, Z., M. Jiao, R. Lu, T. X. Wu, S. T. Wu, W. Y. Li, and C. K. Wei, "Wide-view and broadband circular polarizers for transflective liquid crystal displays," J. Display Technol., Vol. 4, No. 2, 129-138, 2008.

29. Gansel, J., M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, and M.Wegener, "Gold helix photonic metamaterial as broadband circular polarizer," Science, Vol. 325, No. 5947, 1513-1515, 2009.

30. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric chiral metamaterial circular polarizer based on four U-shaped split ring resonators," Opt. Lett., Vol. 36, No. 9, 1653-1655, 2011.

31. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Opt. Express, Vol. 20, No. 14, 16050-16058, 2012.

32. Xie, L., H.-L. Yang, X. Huang, and Z. Li, "Multi-band circular polarizer using archimedean spiral structure chiral metamaterial with zero and negative refractive index," Progress In Electromagnetics Research, Vol. 141, 645-657, 2013.

33. Yana, S. and G. A. E. Vandenbosch, "Compact circular polarizer based on chiral twisted double split-ring resonator," Appl. Phys. Lett., Vol. 102, 103503, 2013.

34. Xu, H. X., G. M. Wang, M. Q. Qi, T. Cai, and T. J. Cui, "Compact dual-band circular polarizer using twisted Hilbert-shaped chiral metamaterial," Opt. Express, Vol. 210, No. 21, 24912-24921, 2013.

35. Ye, Y., X. Li, F. Zhuang, and S. W. Chang, "Homogeneous circular polarizers using a bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 99, 031111, 2011.

36. Cheng, Y., Y. Nie, Z. Cheng, and R. Z. Gong, "Dual-band circular polarizer and linear polarization transformer based on twisted split-ring structure asymmetric chiral metamaterial," Progress In Electromagnetics Research, Vol. 145, 263-272, 2014.

37. Euler, M., V. Fusco, R. Cahill, and R. Dickie, "325 GHz single layer sub-millimeter wave FSS based split slot ring linear to circular polarization convertor," IEEE Trans. Antenn. Propag., Vol. 58, No. 7, 2457-2458, 2010.

38. Wu, S., X. Huang, B. Xiao, Y. Jin, and H. Yang, "Multi-band circular polarizer based on twisted triple split-ring resonator," Chin. Phys. B, Vol. 23, No. 12, 127805, 2014.

39. Li, Y., J. Zhang, S. Qu, J. Wang, L. Zheng, Y. Pang, Z. Xu, and A. Zhang, "Achieving wide- band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces," Journal of Applied Physics, Vol. 117, No. 4, 044501, 2015.

40. Hodgkinson, I. J., A. Lakhtakia, Q. H. Wu, S. L. De, and M. W. McCall, "Ambichiral, equichiral and finely chiral layered structures," Opt. Commun., Vol. 239, 353, 2004.

41. Cheng, Y. Z., Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, "Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 27, No. 14, 1850-1858, 2013.

42. Cheng, Y. Z., R. Z. Gong, Z. Z. Cheng, and Y. Nie, "Perfect dual-band circular polarizer based on twisted split-ring structure asymmetric chiral metamaterial," Applied Optics, Vol. 53, No. 25, 5763-5768, 2014.

43. Cheng, Y. Z., R. Z. Gong, and Z. Z. Cheng, "A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves," Optics Commun., Vol. 361, 41-46, 2016.

© Copyright 2014 EMW Publishing. All Rights Reserved