PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 160 > pp. 41-50

SURFACE IMPEDANCE SYNTHESIS USING PARALLEL PLANAR ELECTRIC METASURFACES

By B. O. Zhu

Full Article PDF (1,931 KB)

Abstract:
Metasurfaces, due to its designable surface electric and magnetic impedances, have largely enhanced electromagnetic wave manipulation techniques. The conventional approach to realize the surface magnetic impedance requires non-planar structures, such as metallic loops, which is not easy to fabricate, especially at optical frequencies. In this work, we theoretically and rigorously prove that e ective surface magnetic and electric impedances can be obtained using parallel electric metasurfaces. A synthesis method is presented which allows independent designs of surface electric and magnetic impedances. Finally, a polarization converter with high energy efficiency is designed using the proposed impedance synthesis method for verifi cation. The proposed synthesis method is favorable for reducing fabrication complexities.

Citation:
B. O. Zhu, "Surface Impedance Synthesis Using Parallel Planar Electric Metasurfaces," Progress In Electromagnetics Research, Vol. 160, 41-50, 2017.
doi:10.2528/PIER17061904
http://www.jpier.org/PIER/pier.php?paper=17061904

References:
1. Glybovski, S. B., S. A. Tretyakov, P. A. Belov, Y. S. Kivshar, and C. R. Simovski, "Metasurfaces: From microwaves to visible," Physics Reports, Vol. 634, No. 1, 72, 2016.

2. Kuester, E. F., M. A. Mohamed, M. Piket-May, and C. L. Holloway, "Averaged transition conditions for electromagnetic fields at a metafilm," IEEE Trans. Antennas Propagat., Vol. 51, No. 10, 2641-2651, Oct. 2003.
doi:10.1109/TAP.2003.817560

3. Holloway, C. L., M. A. Mohamed, E. F. Kuester, and A. Dienstfrey, "Reflection and transmission properties of a metafilm: With an application to a controllable surface composed of resonant particles," IEEE Trans. Electomag. Compat., Vol. 47, No. 4, 853-865, Nov. 2005.
doi:10.1109/TEMC.2005.853719

4. Yu, N., P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, and Z. Gaburro, "Light propagation with phase discontinuities: Generalized laws of reflection and refraction," Science, Vol. 334, No. 6054, 333-337, 2011.
doi:10.1126/science.1210713

5. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O’Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, Apr. 2012.
doi:10.1109/MAP.2012.6230714

6. Niemi, T., A. O. Karilainen, and S. A. Tretyakov, "Synthesis of polarization transformers," IEEE Trans. Antennas Propagat., Vol. 61, No. 6, 3102-3111, Jun. 2013.
doi:10.1109/TAP.2013.2252136

7. Selvanayagam, M. and G. V. Eleftheriades, "Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation," Opt. Express, Vol. 21, No. 12, 14409-14429, Jun. 17, 2013.
doi:10.1364/OE.21.014409

8. Kildishev, A. V., A. Boltasseva, and V. M. Shalaev, "Planar photonics with metasurfaces," Science, Vol. 339, No. 6125, 2013.
doi:10.1126/science.1232009

9. Memarzadeh, B. and H. Mosallaei, "Array of planar plasmonic scatterers functioning as light concentrator," Opt. Lett., Vol. 36, No. 13, 2569-2571, 2011.
doi:10.1364/OL.36.002569

10. Papakostas, A., A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, and N. I. Zheludev, "Optical manifestations of planar chirality," Phys. Rev. Lett., Vol. 90, 107404, Mar. 2003.
doi:10.1103/PhysRevLett.90.107404

11. Huang, L., X. Chen, H. Muehlenbernd, H. Zhang, S. Chen, B. Bai, Q. Tan, G. Jin, K.-W. Cheah, C.-W. Qiu, J. Li, T. Zentgraf, and S. Zhang, "Three-dimensional optical holography using a plasmonic metasurface," Nat. Commun., 4, Nov. 2013.

12. Shitrit, N., I. Yulevich, E. Maguid, D. Ozeri, D. Veksler, V. Kleiner, and E. Hasman, "Spin-optical metamaterial route to spin-controlled photonics," Science, Vol. 340, No. 6133, 724-726, May 10, 2013.
doi:10.1126/science.1234892

13. Niv, A., G. Biener, V. Kleiner, and E. Hasman, "Spiral phase elements obtained by use of discrete space-variant subwavelength gratings," Opt. Commun., Vol. 251, No. 4–6, 306-314, 2005.
doi:10.1016/j.optcom.2005.03.002

14. Genevet, P., N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, and F. Capasso, "Ultra-thin plasmonic optical vortex plate based on phase discontinuities," Appl. Phys. Lett., Vol. 100, No. 1, 013101, Jan. 2012.
doi:10.1063/1.3673334

15. Shu, W., D. Song, Z. Tang, H. Luo, Y. Ke, X. Lv, S. Wen, and D. Fan, "Generation of optical beams with desirable orbital angular momenta by transformation media," Phys. Rev. A, Vol. 85, 063840, Jun. 2012.
doi:10.1103/PhysRevA.85.063840

16. Chen, M. L. N., L. J. Jiang, and W. E. I. Sha, "Ultrathin complementary metasurface for orbital angular momentum generation at microwave frequencies," IEEE Trans. Antennas Propagat., Vol. 65, No. 1, 396-400, Jan. 2017.
doi:10.1109/TAP.2016.2626722

17. Ding, X., F. Monticone, K. Zhang, L. Zhang, D. Gao, S. N. Burokur, A. de Lustrac, Q. Wu, C.- W. Qiu, and A. Alu, "Ultrathin pancharatnamberry metasurface with maximal cross-polarization efficiency," Advanced Materials, Vol. 27, No. 7, 1195-1200, Feb. 2015.
doi:10.1002/adma.201405047

18. Yu, N., F. Aieta, P. Genevet, M. A. Kats, Z. Gaburro, and F. Capasso, "A broadband, backgroundfree quarter-wave plate based on plasmonic metasurfaces," Nano Lett., Vol. 12, No. 12, 6328-6333, 2012, PMID: 23130979.
doi:10.1021/nl303445u

19. Hasman, E., V. Kleiner, G. Biener, and A. Niv, "Polarization dependent focusing lens by use of quantized pancharatnam-berry phase diffractive optics," Appl. Phys. Lett., Vol. 82, No. 3, 328-330, 2003.
doi:10.1063/1.1539300

20. Chen, X., L. Huang, H. M¨uhlenbernd, G. Li, B. Bai, Q. Tan, G. Jin, C.-W. Qiu, S. Zhang, and T. Zentgraf, "Dual-polarity plasmonic metalens for visible light," Nat. Commun., Vol. 3, 1198, Nov. 2012.

21. Aieta, F., P. Genevet, M. A. Kats, N. Yu, R. Blanchard, Z. Gaburro, and F. Capasso, "Aberrationfree ultrathin at lenses and axicons at telecom wavelengths based on plasmonic metasurfaces," Nano Lett., Vol. 12, No. 9, 4932-4936, 2012, PMID: 22894542.
doi:10.1021/nl302516v

22. Pors, A., M. G. Nielsen, R. L. Eriksen, and S. I. Bozhevolnyi, "Broadband focusing at mirrors based on plasmonic gradient metasurfaces," Nano Lett., Vol. 13, No. 2, 829-834, 2013, PMID: 23343380.
doi:10.1021/nl304761m

23. Pfeiffer, C. and A. Grbic, "Metamaterial huygens surfaces: Tailoring wave fronts with re ectionless sheets," Phys. Rev. Lett., Vol. 110, 197401, 2013.
doi:10.1103/PhysRevLett.110.197401

24. Zhu, B. O., K. Chen, N. Jia, L. Sun, J. Zhao, T. Jiang, and Y. Feng, "Dynamic control of electromagnetic wave propagation with the equivalent principle inspired tunable metasurface," Sci. Rep., 4, May 15, 2014.

25. Zhao, Y. and A. Alu, "Manipulating light polarization with ultrathin plasmonic metasurfaces," Phys. Rev. B, Vol. 84, 205428, Nov. 2011.

26. Zhang, X., Z. Tian, W. Yue, J. Gu, S. Zhang, J. Han, and W. Zhang, "Broadband terahertz wave de ection based on c-shape complex metamaterials with phase discontinuities," Advanced Materials, Vol. 25, No. 33, 4567-4572, 2013.
doi:10.1002/adma.201204850

27. Kang, M., T. Feng, H.-T. Wang, and J. Li, "Wave front engineering from an array of thin aperture antennas," Opt. Express, Vol. 20, No. 14, 15882-15890, Jul. 2012.
doi:10.1364/OE.20.015882

28. Epstein, A. and G. V. Eleftheriades, "Passive lossless huygens metasurfaces for conversion of arbitrary source field to directive radiation," IEEE Trans. Antennas Propagat., Vol. 62, No. 11, 5680-5695, Nov. 2014.
doi:10.1109/TAP.2014.2354419

29. Kim, M., H. Wong, M. Alex, and G. V. Eleftheriades, "Optical huygens’ metasurfaces with independent control of the magnitude and phase of the local reflection coefficients," Phys. Rev. X, Vol. 4, 041042, Dec. 2014.

30. Zhao, Y., M. A. Belkin, and A. Alu, "Twisted optical metamaterials for planarized ultrathin broadband circular polarizers," Nat. Commun., Vol. 3, 870, May 2012.
doi:10.1038/ncomms1877

31. Monticone, F., N. M. Estakhri, and A. Alu, "Full control of nanoscale optical transmission with a composite metascreen," Phys. Rev. Lett., Vol. 110, 203903, 2013.
doi:10.1103/PhysRevLett.110.203903

32. Pfeiffer, C., N. K. Emani, A. M. Shaltout, A. Boltasseva, V. M. Shalaev, and A. Grbic, "Efficient light bending with isotropic metamaterial huygens surfaces," Nano Lett., Vol. 14, No. 5, 2491-2497, 2014, PMID: 24689341.
doi:10.1021/nl5001746

33. Pfeiffer, C. and A. Grbic, "Bianisotropic metasurfaces for optimal polarization control: Analysis and synthesis," Phys. Rev. Applied, Vol. 2, 044011, Oct. 2014.

34. Strikwerda, A. C., K. Fan, H. Tao, D. V. Pilon, X. Zhang, and R. D. Averitt, "Comparison of birefringent electric split-ring resonator and meanderline structures as quarter-wave plates at terahertz frequencies," Opt. Express, Vol. 17, No. 1, 136-149, Jan. 2009.
doi:10.1364/OE.17.000136

35. Euler, M., V. Fusco, R. Cahill, and R. Dickie, "325 GHz single layer sub-millimeter wave fss based split slot ring linear to circular polarization convertor," IEEE Trans. Antennas Propagat., Vol. 58, No. 7, 2457-2459, Jul. 2010.
doi:10.1109/TAP.2010.2048874


© Copyright 2014 EMW Publishing. All Rights Reserved