PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 160 > pp. 19-27

BROADBAND GENERATION OF ORBITAL ANGULAR MOMENTUM CARRYING BEAMS IN RF REGIMES

By F. Mao, M. Huang, T. Li, J. Zhang, and C. Yang

Full Article PDF (1,503 KB)

Abstract:
We propose a novel approach for the broadband generation of orbital angular momentum (OAM) carrying beams based on the Archimedean spiral. The mechanism behind the antenna is theoretically analyzed and further validated by numerical simulation and physical measurement. The results show that the spiral-based antenna is able to reliably generate the OAM carrying beams in an ultra-wide frequency band. Of particular interest is the fact that the mode number of radiated beams is reconfigurable with a change in operating frequency. Prototypes of a single-arm spiral antenna (SASA), a multi-arm spiral antenna (MASA), and a compact multi-arm spiral antenna (CMASA) are investigated and demonstrated to support our arguments. The proposed approach provides an effective and competitive way to generate OAM carrying beams in radio and microwave bands, which may have potential in wireless communication applications due to its characteristics of simplicity, broadband capacity and reconfiguration opportunities.

Citation:
F. Mao, M. Huang, T. Li, J. Zhang, and C. Yang, "Broadband Generation of Orbital Angular Momentum Carrying Beams in RF Regimes," Progress In Electromagnetics Research, Vol. 160, 19-27, 2017.
doi:10.2528/PIER17082302
http://www.jpier.org/PIER/pier.php?paper=17082302

References:
1. Krenn, M., M. Malik, M. Erhard, and A. Zeilinger, "Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes," Phil. Trans. R. Soc. A, Vol. 375, 20150442, 2017.
doi:10.1098/rsta.2015.0442

2. McMorran, B. J., A. Agrawal, P. A. Ercius, V. Grillo, A. A. Herzing, T. R. Harvey, M. Linck, and J. S. Pierce, "Origins and demonstrations of electrons with orbital angular momentum," Phil. Trans. R. Soc. A, Vol. 375, 20150434, 2017.
doi:10.1098/rsta.2015.0434

3. Shiloh, R., Y. Tsur, R. Remez, Y. Lereah, B. A. Malomed, V. Shvedov, C. Hnatovsky, W. Krolikowski, and A. Arie, "Unveiling the orbital angular momentum and acceleration of electron beams," Phys. Rev. Lett., Vol. 114, No. 9, 096102, 2015.
doi:10.1103/PhysRevLett.114.096102

4. Ritsch-Marte, M., "Orbital angular momentum light in microscopy," Phil. Trans. R. Soc. A, Vol. 375, 20150437, 2017.
doi:10.1098/rsta.2015.0437

5. Fischer, P., "X-ray imaging of magnetic structures," IEEE Transactions on Magnetics, Vol. 51, No. 2, 1-31, 2015.
doi:10.1109/TMAG.2014.2363054

6. Clark, C. W., R. Barankov, M. G. Huber, M. Arif, D. G. Cory, and D. A. Pushin, "Controlling neutron orbital angular momentum," Nature, Vol. 525, No. 7570, 504-506, 2015.
doi:10.1038/nature15265

7. Uribe-Patarroyo, N., A. Fraine, D. S. Simon, O. Minaeva, and A. V. Sergienko, "Object identification using correlated orbital angular momentum states," Phys. Rev. Lett., Vol. 110, No. 4, 043601, 2013.
doi:10.1103/PhysRevLett.110.043601

8. Padgett, M. and R. Bowman, "Tweezers with a twist," Nat. Photonics, Vol. 5, No. 6, 343-348, 2011.
doi:10.1038/nphoton.2011.81

9. Yuan, Y., T. Lei, Z. Li, Y. Li, S. Gao, Z. Xie, and X. Yuan, "Beam wander relieved orbital angular momentum communication in turbulent atmosphere using Bessel beams," Scientific Reports, Vol. 7, 2017.

10. Ren, Y., L. Li, G. Xie, Y. Yan, Y. Cao, H. Huang, N. Ahmed, Z. Zhao, P. Liao, C. Zhang, G. Caire, A. F. Molisch, M. Tur, and A. E. Willner, "Line-of-sight millimeter-wave communications using orbital angular momentum multiplexing combined with conventional spatial multiplexing," IEEE Transactions on Wireless Communications, 2017.

11. Yu, S., "Potentials and challenges of using orbital angular momentum communications in optical interconnects," Optics Express, Vol. 23, No. 3, 3075-3087, 2015.
doi:10.1364/OE.23.003075

12. Bozinovic, N., Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, "Terabit-scale orbital angular momentum mode division multiplexing in fibers," Science, Vol. 340, No. 6140, 1545-1548, 2013.
doi:10.1126/science.1237861

13. Devlin, R. C., A. Ambrosio, D. Wintz, S. L. Oscurato, A. Y. Zhu, M. Khorasaninejad, J. Oh, P. Maddalena, and F. Capasso, "Spin-to-orbital angular momentum conversion in dielectric metasurfaces," Optics Express, Vol. 25, No. 1, 377-393, 2017.
doi:10.1364/OE.25.000377

14. Cai, X., J. Wang, M. J. Strain, B. Johnson-Morris, J. Zhu, M. Sorel, J. L. O’Brien, M. G. Thompson, and S. Yu, "Integrated compact optical vortex beam emitters," Science, Vol. 338, No. 6105, 363-366, 2012.
doi:10.1126/science.1226528

15. Zhang, C., L. Deng, W. J. Hong, W. X. Jiang, J. F. Zhu, M. Zhou, L. Wang, S. F. Li, and B. Peng, "Three-dimensional simultaneous arbitrary-way orbital angular momentum generator based on transformation optics," Scientific Reports, Vol. 6, 2016.

16. Lei, T., M. Zhang, Y. Li, P. Jia, G. N. Liu, X. Xu, Li Z., C. Min, J. Lin, C. Yu, H. Niu, and X. Yuan, "Massive individual orbital angular momentum channels for multiplexing enabled by Dammann gratings," Light: Science & Applications, Vol. 4, e257, 2015.
doi:10.1038/lsa.2015.30

17. Li, S. and Z. Wang, "Generation of optical vortex based on computer-generated holographic gratings by photolithography," Appl. Phys. Lett., Vol. 103, No. 14, 141110, 2013.
doi:10.1063/1.4823596

18. Dall, R., M. D. Fraser, A. S. Desyatnikov, G. Li, S. Brodbeck, M. Kamp, C. Schneider, S. Hofling, and E. A. Ostrovskaya, "Creation of orbital angular momentum states with chiral polaritonic lenses," Phys. Rev. Lett., Vol. 113, No. 20, 200404, 2014.
doi:10.1103/PhysRevLett.113.200404

19. Niederriter, R. D., M. E. Siemens, and J. T. Gopinath, "Continuously tunable orbital angular momentum generation using a polarization-maintaining fiber," Optics Letters, Vol. 41, No. 14, 3213-3216, 2016.
doi:10.1364/OL.41.003213

20. Gambini, F., P. Velha, C. J. Oton, and S. Faralli, "Orbital angular momentum generation with ultra-compact bragg-assisted silicon microrings," IEEE Photonics Technology Letters, Vol. 28, No. 21, 2355-2358, 2016.
doi:10.1109/LPT.2016.2594030

21. Thide, B., H. Then, J. Sj¨oholm, K. Palmer, J. Bergman, T. D. Carozzi, Ya. N. Istomin, N. H. Ibragimov, and R. Khamitova, "Utilization of photon orbital angular momentum in the lowfrequency radio domain," Phys. Rev. Lett., Vol. 99, No. 8, 087701, 2007.
doi:10.1103/PhysRevLett.99.087701

22. Mohammadi, S. M., L. K. Daldorff, J. E. Bergman, R. L. Karlsson, B. Thide, K. Forozesh, T. D. Carozzi, and B. Isham, "Orbital angular momentum in radio — A system study," IEEE Trans. Antennas Propag., Vol. 58, No. 2, 565-572, 2010.
doi:10.1109/TAP.2009.2037701

23. Tamburini, F., E. Mari, A. Sponselli, B. Thide, A. Bianchini, and F. Romanato, "Encoding many channels on the same frequency through radio vorticity: First experimental test," New J. Phys., Vol. 14, No. 3, 033001, 2012.
doi:10.1088/1367-2630/14/3/033001

24. Barbuto, M., F. Trotta, F. Bilotti, and A. Toscano, "Circular polarized patch antenna generating orbital angular momentum," Progress In Electromagnetics Research, Vol. 148, 23-30, 2014.
doi:10.2528/PIER14050204

25. Zheng, S., X. Hui, X. Jin, H. Chi, and X. Zhang, "Transmission characteristics of a twisted radio wave based on circular traveling-wave antenna," IEEE Trans. Antennas Propag., Vol. 63, No. 4, 1530-1536, 2015.
doi:10.1109/TAP.2015.2393885

26. Yu, S., L. Li, G. Shi, C. Zhu, X. Zhou, and Y. Shi, "Design, fabrication, and measurement of reflective metasurface for orbital angular momentum vortex wave in radio frequency domain," Appl. Phys. Lett., Vol. 108, No. 12, 121903, 2016.
doi:10.1063/1.4944789

27. Wei, W., K. Mahdjoubi, C. Brousseau, and O. Emile, "Generation of OAM waves with circular phase shifter and array of patch antennas," Electronics Letters, Vol. 51, No. 6, 442-443, 2015.
doi:10.1049/el.2014.4425

28. Chen, J. J., Q. N. Lu, F. F. Dong, J. J. Yang, and M. Huang, "Wireless OAM transmission system based on elliptical microstrip patch antenna," Optics Express, Vol. 24, No. 11, 11531-11538, 2016.
doi:10.1364/OE.24.011531

29. Hui, X., S. Zheng, Y. Chen, Y. Hu, X. Jin, H. Chi, and X. Zhang, "Multiplexed millimeter wave communication with dual orbital angular momentum (OAM) mode antennas," Scientific Reports, Vol. 5, 10148, 2015.
doi:10.1038/srep10148

30. Yu, S., L. Li, G. Shi, C. Zhu, and Y. Shi, "Generating multiple orbital angular momentum vortex beams using a metasurface in radio frequency domain," Appl. Phys. Lett., Vol. 108, No. 24, 241901, 2016.
doi:10.1063/1.4953786

31. Kaiser, J. A., "The Archimedean two-wire spiral antenna," IRE Transactions on Antennas & Propagation, Vol. 8, No. 3, 312-323, 1960.
doi:10.1109/TAP.1960.1144840

32. Nakano, H., R. Satake, and J. Yamauchi, "Extremely low-profile, single-arm, wideband spiral antenna radiating a circularly polarized wave," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1511-1520, 2010.
doi:10.1109/TAP.2010.2044345

33. Mcfadden, M. and W. R. Scott, "Analysis of the equiangular spiral antenna on a dielectric substrate," IEEE Trans. Antennas Propag., Vol. 55, No. 11, 3163-3171, 2007.
doi:10.1109/TAP.2007.908838


© Copyright 2014 EMW Publishing. All Rights Reserved