PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 160 > pp. 89-101

ULTRABROADBAND DIODE-LIKE ASYMMETRIC TRANSMISSION AND HIGH-EFFICIENCY CROSS-POLARIZATION CONVERSION BASED ON COMPOSITE CHIRAL METAMATERIAL

By Y. Cheng, J.-C. Zhao, X. Mao, and R. Gong

Full Article PDF (1,039 KB)

Abstract:
In this paper, a three layer composite chiral metamaterial (CCMM) is proposed to achieve diode-like asymmetric transmission and high-efficiency cross-polarization conversion by 90° polarization rotation with ultrabroadband range simultaneously in microwave region, which was verified by simulation and experiment. This CCMM is composed of a disk-split-ring (DSR) structure sandwiched between two twisted sub-wavelength metal grating structures. The simulation agrees well with experiment in principle. The simulation results indicate that the incident y(x)-polarized wave propagation along the -z (+z) direction through the CCMM slab is still linearly polarized wave with high purity, but the polarization direction is rotated by ± 90°, and the polarization conversion ratio (PCR) is greater than 90% in the frequency range of 4.36-14.91 GHz. In addition, in the above frequency range, the asymmetric transmission coefficient (Δlin) and the total transmittance (Tx) for x-polarized wave propagation along the -z axis direction are both over 0.8. Finally, the above experiment and simulation results were further verified by the electric field distribution characteristics of the CCMM unit-cell structure. Our design will provide an important reference for the practical applications of the CCMM for polarization manipulation.

Citation:
Y. Cheng, J.-C. Zhao, X. Mao, and R. Gong, "Ultrabroadband Diode-Like Asymmetric Transmission and High-Efficiency Cross-Polarization Conversion Based on Composite Chiral Metamaterial," Progress In Electromagnetics Research, Vol. 160, 89-101, 2017.
doi:10.2528/PIER17091303
http://www.jpier.org/PIER/pier.php?paper=17091303

References:
1. Lindelli, V., et al., Electromagnetic Waves in Chiral and Bi-isotropic Media, Artech House, London, 1994.

2. Pendry, J. B., "A chiral route to negative refraction," Science, Vol. 306, 1353-1355, 2004.
doi:10.1126/science.1104467

3. Plum, E., J. Zhou, J. Dong, V. A. Fedotov, T. Koschny, C. M. Soukoulis, and N. I. Zheludev, "Metamaterial with negative index due to chirality," Phys. Rev. B, Vol. 79, No. 3, 035407, 2009.
doi:10.1103/PhysRevB.79.035407

4. Monzon, C. and D. W. Forester, "Negative refraction and focusing of circularly polarize waves in optically active media," Phys. Rev. Lett., Vol. 95, 123904, 2005.
doi:10.1103/PhysRevLett.95.123904

5. Li, J., F.-Q. Yang, and J.-F. Dong, "Design and simulation of L-shaped chiral negative refractive index structure," Progress In Electromagnetics Research, Vol. 116, 395-408, 2011.
doi:10.2528/PIER11032601

6. Li, Z., K. B. Alici, E. Colak, and E. Ozbay, "Complementary chiral metamaterials with giant optical activity and negative refractive index," Appl. Phys. Lett., Vol. 98, 161907, 2011.
doi:10.1063/1.3574909

7. Cheng, Y., Y. Nie, and R. Z. Gong, "Giant optical activity and negative refractive index using complementary U-shaped structure assembly," Progress In Electromagnetics Research M, Vol. 25, 239-253, 2012.
doi:10.2528/PIERM12070403

8. Cheng, Y., Y. Nie, L. Wu, and R. Z. Gong, "Giant circular dichroism and negative refractive index of chiral metamaterial based on split-ring resonators," Progress In Electromagnetics Research, Vol. 138, 421-432, 2013.
doi:10.2528/PIER13011202

9. Decker, M., R. Zhao, C. M. Soukoulis, S. Linden, and M. Wegener, "Twisted split-ring-resonator photonic metamaterial with huge optical activity," Opt. Lett., Vol. 35, No. 10, 1593-1593, 2010.
doi:10.1364/OL.35.001593

10. Kwon, D. H., P. L. Werner, and D. H. Werner, "Optical planar chiral metamaterial designs for strong circular dichroism and polarization rotation," Opt. Express, Vol. 16, No. 16, 11802-11807, 2008.
doi:10.1364/OE.16.011802

11. Fedotov, V. A., P. L. Mladyonov, S. L. Prosvirnin, A. V. Rogacheva, Y. Chen, and N. I. Zheludev, "Asymmetric propagation of electromagnetic waves through a planar chiral structure," Phys. Rev. Lett., Vol. 97, No. 16, 167401, 2006.
doi:10.1103/PhysRevLett.97.167401

12. Fedotov, V. A., A. S. Schwanecke, N. I. Zheludev, V. V. Khardikov, and S. L. Prosvirnin, "Asymmetric transmission of light and enantiomerically sensitive plasmon resonance in planar chiral nanostructures," Nano Lett., Vol. 7, No. 7, 1996-1999, 2007.
doi:10.1021/nl0707961

13. Singh, R., E. Plum, C. Menzel, C. Rockstuhl, A. K. Azad, R. A. Cheville, F. Lederer, W. Zhang, and N. I. Zheludev, "Terahertz metamaterial with asymmetric transmission," Phys. Rev. B, Vol. 80, No. 15, 153104(5), 2009.
doi:10.1103/PhysRevB.80.153104

14. Menzel, C., C. Rockstuhl, and F. Lederer, "Advanced Jones calculus for the classification of periodic metamaterials," Phys. Rev. A, Vol. 82, 053811, 2010.
doi:10.1103/PhysRevA.82.053811

15. Huang, C., Y. Feng, J. Zhao, Z. Wang, and T. Jiang, "Asymmetric electromagnetic wave transmission of linear polarization via polarization conversion through chiral metamaterial structures," Phys. Rev. B, Vol. 85, No. 19, 195131, 2012.
doi:10.1103/PhysRevB.85.195131

16. Cheng, Y., Y. Nie, X. Wang, and R. Gong, "An ultrathin transparent metamaterial polarization transformer based on a twist-split-ring resonator," Appl. Phys. A, Vol. 111, 209-215, 2013.
doi:10.1007/s00339-013-7546-1

17. Cong, L., W. Cao, X. Zhang, Z. Tian, J. Gu, R. Singh, J. Han, and W. Zhang, "A perfect metamaterial polarization rotator," Appl. Phys. Lett., Vol. 103, No. 17, 171107, 2013.
doi:10.1063/1.4826536

18. Cheng, Y. Z., Y. Nie, Z. Z. Cheng, L. Wu, X. Wang, and R. Z. Gong, "Broadband transparent metamaterial linear polarization transformer based on triple-split-ring resonators," Journal of Electromagnetic Waves and Applications, Vol. 27, 1850-1858, 2013.
doi:10.1080/09205071.2013.825891

19. Wei, Z., Y. Cao, Y. Fan, X. Yu, and H. Li, "Broadband polarization transformation via enhanced asymmetric transmission through arrays of twisted complementary split-ring resonators," Appl. Phys. Lett., Vol. 99, No. 22, 21907-3, 2011.
doi:10.1063/1.3664774

20. Han, J., H. Li, Y. Fan, Z. Wei, C. Wu, Y. Cao, X. Yu, F. Li, and Z. Wang, "An ultrathin twiststructure polarization transformer based on fish-scale metallic wires," Appl. Phys. Lett., Vol. 98, No. 15, 151908, 2011.
doi:10.1063/1.3580608

21. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Multi-band circular polarizer using planar spiral metamaterial structure," Opt. Express, Vol. 20, No. 14, 16050-16058, 2012.
doi:10.1364/OE.20.016050

22. Song, K., X. Zhao, Y. Liu, Q. Fu, and C. Luo, "A frequency-tunable 90-polarization rotation device using composite chiral metamaterials," Appl. Phys. Lett., Vol. 103, 101908, 2013.
doi:10.1063/1.4820810

23. Xu, H.-X., G.-M. Wang, M.-Q. Qi, and T. Cai, "Dual-band circular polarizer and asymmetric spectrum filter using ultrathin compact chiral metamaterial," Progress In Electromagnetics Research, Vol. 143, 243-261, 2013.
doi:10.2528/PIER13093009

24. Wu, L., Z. Yang, Y. Cheng, R. Gong, M. Zhao, Y. Zheng, J. Duan, and X. Yuan, "Circular polarization converters based on bi-layered asymmetrical split ring metamaterials," Appl. Phys. A, Vol. 116, No. 2, 643-648, 2014.
doi:10.1007/s00339-014-8252-3

25. Yogesh, N. F., T. Lan, and F. Ouyang, "Far-infrared circular polarization and polarization filtering based on Fermat’s spiral chiral metamaterial," IEEE Photonics Journal, Vol. 7, No. 3, 1-12, 2015.
doi:10.1109/JPHOT.2015.2423291

26. Ma, X., Z. Xiao, and D. Liu, "Dual-band cross polarization converter in bi layered complementary chiral metamaterial," Journal of Modern Optics, Vol. 63, No. 10, 937-940, 2016.
doi:10.1080/09500340.2015.1111454

27. Tang, J., Z. Xiao, K. Xu, X. Ma, D. Liu, and Z. Wang, "Cross polarization conversion based on a new chiral spiral slot structure in THz region," Opt. Quant. Electron., Vol. 48, 111, 2016.
doi:10.1007/s11082-016-0407-3

28. Xu, K.-K., Z.-Y. Xiao, J.-Y. Tang, D.-J. Liu, and Z.-H. Wang, "Ultra-broad band and dual-band highly efficient polarization conversion based on the three-layered chiral structure," Physica E, Vol. 81, 169-176, 2016.
doi:10.1016/j.physe.2016.03.015

29. Menzel, C., C. Helgert, C. Rockstuhl, E.-B. Kley, A. Tunnermann, T. Pertsch, and F. Lederer, "Asymmetric transmission of linearly polarized light at optical metamaterials," Phys. Rev. Lett., Vol. 104, 253902, 2010.
doi:10.1103/PhysRevLett.104.253902

30. Kang, M., J. Chen, H. Cui, Y. Li, and H. Wang, "Asymmetric transmission for linearly polarized electromagnetic radiation," Opt. Express, Vol. 19, 8347, 2011.
doi:10.1364/OE.19.008347

31. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Asymmetric transmission of linearly polarized waves and polarization angle dependent wave rotation using a chiral metamaterial," Opt. Express, Vol. 19, 14290-9, 2011.

32. Novitsky, A. V., et al., "Asymmetric transmission in planar chiral split-ring metamaterials: Microscopic Lorentz-theory approach," Phys. Rev. B, Vol. 86, No. 7, 075138, 2012.
doi:10.1103/PhysRevB.86.075138

33. Mutlu, M., A. E. Akosman, A. E. Serebryannikov, and E. Ozbay, "Diodelike asymmetric transmission of linearly polarized waves using magnetoelectric coupling and electromagnetic wave tunneling," Phys. Rev. Lett., Vol. 108, 213905, 2012.
doi:10.1103/PhysRevLett.108.213905

34. Shi, J. H., X. C. Liu, S. W. Yu, T. T. Lv, Z. Zhu, H. F. Ma, and T. J. Cui, "Dual-band asymmetric transmission of linear polarization in bilayered chiral metamaterial," Appl. Phys. Lett., Vol. 102, 191905, 2013.
doi:10.1063/1.4805075

35. Xu, Y., Q. Shi, Z. Zhu, and J. Shi, "Mutual conversion and asymmetric transmission of linearly polarized light in bilayered chiral metamaterial," Opt. Express, Vol. 22, No. 21, 25679-25688, 2014.
doi:10.1364/OE.22.025679

36. Han, S., H. Yang, L. Guo, X. Huang, and B. Xiao, "Manipulating linearly polarized electromagnetic waves using the asymmetric transmission effect of planar chiral metamaterials," J. Opt., Vol. 16, No. 3, 035105, 2014.
doi:10.1088/2040-8978/16/3/035105

37. Zhou, Z. and H. Yang, "Triple-band asymmetric transmission of linear polarization with deformed S-shape bilayer chiral metamaterial," Appl. Phys. A, Vol. 119, No. 1, 115-119, 2015.
doi:10.1007/s00339-015-8983-9

38. Wang, Y. H., J. Shao, J. Li, Z. Liu, J. Li, Z. G. Dong, and Y. Zhai, "Broadband high-efficiency transmission asymmetry by a chiral bilayer bar metastructure," J. Appl. Phys., Vol. 117, No. 17, 173102, 2015.
doi:10.1063/1.4919752

39. Liu, D., Z. Xiao, X. Ma, and Z. Wang, "Asymmetric transmission of linearly and circularly polarized waves in metamaterial due to symmetry-breaking," Appl. Phys. Express, Vol. 8, No. 5, 052001, 2015.
doi:10.7567/APEX.8.052001

40. Wang, C., D. F. Tang, J. F. Dong, M. H. Li, and W. K. Pan, "Broad dual-band asymmetric transmission of circular polarized waves in near-infrared communication band," Opt. Express, Vol. 25, No. 10, 11329-11339, 2017.
doi:10.1364/OE.25.011329

41. Ji, R., S. W. Wang, X. Liu, and W. Lu, "Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities," Nanoscale, Vol. 8, No. 15, 8189-8194, 2016.
doi:10.1039/C6NR00058D

42. Liu, D. Y., M. H. Li, X. M. Zhai, L. F. Yao, and J. F. Dong, "Enhanced asymmetric transmission due to fabry-perot-like cavity," Opt. Express, Vol. 22, 11707-11712, 2014.
doi:10.1364/OE.22.011707

43. Xiao, Z.-Y., D.-J. Liu, X.-L. Ma, and Z.-H. Wang, "Multi-band transmissions of chiral metamaterials based on Fabry-Perot like resonators," Opt. Express, Vol. 23, No. 6, 7053-7061, 2015.
doi:10.1364/OE.23.007053

44. Liu, Y., S. Xia, H. Shi, A. Zhang, and Z. Xu, "Efficient dual-band asymmetric transmission of linearly polarized wave using a chiral metamaterial," Progress In Electromagnetics Research C, Vol. 73, 55-64, 2017.
doi:10.2528/PIERC17011602

45. Shang, X.-J., X. Zhai, L.-L. Wang, M.-D. He, Q. Li, X. Luo, and H.-G. Duan, "Asymmetric transmission and polarization conversion of linearly polarized waves with bilayer L-shaped metasurfaces," Appl. Phys. Express, Vol. 10, 052602, 2017.
doi:10.7567/APEX.10.052602

46. Wang, H.-B., X. Zhou, D.-F. Tang, and J.-F. Dong, "Diode-like broadband asymmetric transmission of linearly polarized waves based on Fabry-Perot-like resonators," Journal of Modern Optics, Vol. 7, 1-10, 2017.
doi:10.1080/09500340.2016.1200682

47. Cheng, Y., R. Gong, and L. Wu, "Ultra-broadband linear polarization conversion via diode-like asymmetric transmission with composite metamaterial for terahertz waves," Plasmonics, Vol. 12, 1113-1120, 2016.

48. Huang, X., B. Xiao, D. Yang, and H. Yang, "Ultra-broadband 90◦ polarization rotator based on bi-anisotropic metamaterial," Optics Communications, Vol. 338, 416-421, Mar. 1, 2015.

49. Cheng, Y., W. Withayachumnankul, A. Upadhyay, H. Daniel, Y. Nie, R. Gong, M. Bhaskaran, S. Sriram, and D. Abbott, "Ultra-broadband reflective polarization convertor for terahertz waves," Appl. Phys. Lett., Vol. 105, No. 19, 181111, 2014.
doi:10.1063/1.4901272

50. Zhao, J. and Y. Cheng, "A high-efficiency and broadband reflective 90◦ linear polarization rotator based on anisotropic metamaterial," Appl. Phys. B, Vol. 122, No. 10, 255, 2016.
doi:10.1007/s00340-016-6533-6

51. Grady, N. K., J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. Dalvit, and H. T. Chen, "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399

52. Cheng, Y., C. Wu, Z. Z. Cheng, and R. Z. Gong, "Ultra-compact multi-band chiral metamaterial circular polarizer based on triple twisted split-ring resonator," Progress In Electromagnetics Research, Vol. 155, 105-113, 2016.
doi:10.2528/PIER16012501

53. Song, K., Y. Liu, C. Luo, and X. Zhao, "High-efficiency broadband and multiband crosspolarization conversion using chiral metamaterial," J. Phys. D: Appl. Phys., Vol. 47, 505104, 2014.
doi:10.1088/0022-3727/47/50/505104


© Copyright 2014 EMW Publishing. All Rights Reserved