1. Vrba, J., M. Lapes, and L. Oppl, "Technical aspects of microwave thermotherapy," Bioelectrochemistry and Bioenergetics, Vol. 48, No. 2, 305-309, May 1999.
doi:10.1016/S0302-4598(99)00039-2 Google Scholar
2. Schena, E., D. Tosi, P. Saccomandi, E. Lewis, and T. Kim, "Fiber optic sensors for temperature monitoring during thermal treatments: An overview," Sensors (Basel), Vol. 16, No. 7, Jul. 2016. Google Scholar
3. Frich, L., "Non-invasive thermometry for monitoring hepatic radiofrequency ablation," Minim. Invasive Ther. Allied Technol., Vol. 15, No. 1, 18-25, Jan. 2006.
doi:10.1080/13645700500470025 Google Scholar
4. Wlodarczyk, W., M. Hentschel, P. Wust, R. Noeske, N. Hosten, H. Rinneberg, and R. Felix, "Comparison of four magnetic resonance methods for mapping small temperature changes," Phys. Med. Biol., Vol. 44, No. 2, 607-624, Feb. 1999.
doi:10.1088/0031-9155/44/2/022 Google Scholar
5. Klemetsen, Ø. and S. Jacobsen, "Improved radiometric performance attained by an elliptical microwave antenna with suction," IEEE Transactions on Biomedical Engineering, Vol. 59, No. 1, 263-271, Jan. 2012.
doi:10.1109/TBME.2011.2172441 Google Scholar
6. Dubois, L., J.-P. Sozanski, V. Tessier, J.-C. Camart, J.-J. Fabre, J. Pribetich, and M. Chive, "Temperature control and thermal dosimetry by microwave radiometry in hyperthermia," IEEE Transactions on Microwave Theory and Techniques, Vol. 44, No. 10, 1755-1761, Oct. 1996.
doi:10.1109/22.539932 Google Scholar
7. Karathanasis, K. T., I. A. Gouzouasis, I. S. Karanasiou, and N. K. Uzunoglu, "Experimental study of a hybrid microwave radiometry-hyperthermia apparatus with the use of an anatomical head phantom," IEEE Transactions on Information Technology in Biomedicine, Vol. 16, No. 2, 241-247, Mar. 2012.
doi:10.1109/TITB.2012.2187301 Google Scholar
8. Arthur, R. M., W. L. Straube, J. W. Trobaugh, and E. G. Moros, "Non-invasive estimation of hyperthermia temperatures with ultrasound," International Journal of Hyperthermia, Vol. 21, No. 6, 589-600, Sep. 2005.
doi:10.1080/02656730500159103 Google Scholar
9. Meaney, P. M., T. Zhou, M. W. Fanning, S. D. Geimer, and K. D. Paulsen, "Microwave thermal imaging of scanned focused ultrasound heating: Phantom results," International Journal of Hyperthermia, Vol. 24, No. 7, 523-536, Jan. 2008.
doi:10.1080/02656730801944922 Google Scholar
10. Meaney, P. M., K. D. Paulsen, M. W. Fanning, D. Li, and Q. Fang, "Image accuracy improvements in microwave tomographic thermometry: Phantom experience," International Journal of Hyperthermia, Vol. 19, No. 5, 534-550, Jan. 2003.
doi:10.1080/0265673031000082386 Google Scholar
11. Meaney, P. M., et al., "Microwave thermal imaging: Initial in vivo experience with a single heating zone," International Journal of Hyperthermia, Vol. 19, No. 6, 617-641, 2003.
doi:10.1080/0265673031000140822 Google Scholar
12. Haynes, M., J. Stang, and M. Moghaddam, "Real-time microwave imaging of differential temperature for thermal therapy monitoring," IEEE Transactions on Biomedical Engineering, Vol. 61, No. 6, 1787-1797, Jun. 2014.
doi:10.1109/TBME.2014.2307072 Google Scholar
13. Fiser, O., M. Helbig, S. Ley, J. Sachs, and J. Vrba, "Feasibility study of temperature change detection in phantom using M-sequence radar," 2016 10th European Conference on Antennas and Propagation (EuCAP), 1-4, 2016. Google Scholar
14. Miyakawa, M., "Tomographic measurement of temperature change in phantoms of the human body by chirp radar-type microwave computed tomography," Med. Biol. Eng. Comput., Vol. 31 Suppl, No. S1, S31-6, Jul. 1993. Google Scholar
15. Bertero, M., M. Miyakawa, P. Boccacci, F. Conte, K. Orikasa, and M. Furutani, "Image restoration in chirp-pulse microwave CT (CP-MCT)," IEEE Transactions on Biomedical Engineering, Vol. 47, No. 5, 690-699, May 2000.
doi:10.1109/10.841341 Google Scholar
16. Bolomey, J.-C., C. Durix, and D. Lesselier, "Determination of conductivity profiles by time-domain reflectometry," IEEE Trans. Antennas Propag., Vol. 27, No. 2, 244-248, Mar. 1979.
doi:10.1109/TAP.1979.1142067 Google Scholar
17. Sachs, J., Handbook of Ultra-Wideband Short-Range Sensing: Theory, Sensors, Applications, Wiley-VCH, 2012.
doi:10.1002/9783527651818
18. Lazebnik, M., M. C. Converse, J. H. Booske, and S. C. Hagness, "Ultrawideband temperaturedependent dielectric properties of animal liver tissue in the microwave frequency range," Phys. Med. Biol., Vol. 51, No. 7, 1941-1955, Apr. 2006.
doi:10.1088/0031-9155/51/7/022 Google Scholar
19. Kato, H., M. Hiraoka, and T. Ishida, "An agar phantom for hyperthermia," Medical Physics, Vol. 13, No. 3, 396-398, May 1986.
doi:10.1118/1.595882 Google Scholar
20. Ellison, W. J., "Permittivity of pure water, at standard atmospheric pressure, ver the frequency range 0–25 THz and the temperature range 0–100◦C," Journal of Physical and Chemical Reference Data, Vol. 36, No. 1, 1-18, 2007.
doi:10.1063/1.2360986 Google Scholar
21. Ley, S., O. Fiser, I. Merunka, J. Vrba, J. Sachs, and M. Helbig, "Preliminary investigations for reliable temperature dependent UWB dielectric spectroscopy of tissues and tissue mimicking phantom materials," European Conference on Antennas and Propagation (EuCAP), London, Apr. 2018. Google Scholar
22. Helbig, M., J. Sachs, F. Tansi, I. Hilger, "Experimental feasibility study of contrast agent enhanced UWB breast imaging by means of M-sequence sensor systems," 2014 8th European Conference on Antennas and Propagation (EuCAP), 311-315, 2014.
doi:10.1109/EuCAP.2014.6901755 Google Scholar
23. Lazebnik, M., E. L. Madsen, G. R. Frank, and S. C. Hagness, "Tissue-mimicking phantom materials for narrowband and ultrawideband microwave applications," Phys. Med. Biol., Vol. 50, No. 18, 4245, 2005.
doi:10.1088/0031-9155/50/18/001 Google Scholar
24. Helbig, M., M. Kmec, J. Sachs, C. Geyer, I. Hilger, and G. Rimkus, "Aspects of antenna array configuration for UWB breast imaging," 2012 6th European Conference on Antennas and Propagation (EUCAP), 1737-1741, 2012.
doi:10.1109/EuCAP.2012.6206594 Google Scholar
25. Conceicao, R. C., J. J. Mohr, and M. O’Halloran (Eds.), "An Introduction to Microwave Imaging for Breast Cancer Detection," Springer International Publishing, 2016. Google Scholar