Vol. 171

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2021-10-29

Biosensing Performance of a Plasmonic-Grating-Based Nanolaser (Invited Paper)

By Haoran Zhang, Jiacheng Sun, Jie Yang, Israel De Leon, Remo Proietti Zaccaria, Haoliang Qian, Hongsheng Chen, Gaofeng Wang, and Tao Wang
Progress In Electromagnetics Research, Vol. 171, 159-169, 2021
doi:10.2528/PIER21092405

Abstract

We introduce and numerically investigate a high-quality resonant structure formed by a dielectric low-order diffraction grating combining materials with high refractive index contrast. The proposed structure is capable of supporting multiple plasmonic modes owing to hybridization effects, modes having the characteristic of exhibiting remarkable sensing response to the change of the environment refractive index yet limited figure of merit. To improve the figure of merit, the proposed architecture is modified by adding a layer of semiconductor gain medium, as it can compensate the internal losses. The result is an active sensor showing multi-modal lasing behaviour, with very low threshold and large mode spacing. It is found that the device shows switchable response upon modification of the pump amplitude or polarization, a very important feature when it comes to sensing devices. Finally, the achieved figure of merit is 3400 RIU-1, one order of magnitude higher than the passive case and much higher than the theoretical limit for sensors based on Kretschmann configuration. Thus, the proposed architecture possesses great potentials as an optical sensor for bio-detection and environmental monitoring.

Citation


Haoran Zhang, Jiacheng Sun, Jie Yang, Israel De Leon, Remo Proietti Zaccaria, Haoliang Qian, Hongsheng Chen, Gaofeng Wang, and Tao Wang, "Biosensing Performance of a Plasmonic-Grating-Based Nanolaser (Invited Paper)," Progress In Electromagnetics Research, Vol. 171, 159-169, 2021.
doi:10.2528/PIER21092405
http://www.jpier.org/PIER/pier.php?paper=21092405

References


    1. Wang, D., A. Yang, W. Wang, Y. Hua, R. D. Schaller, G. C. Schatz, and T. W. Odom, "Band-edge engineering for controlled multi-modal nanolasing in plasmonic superlattices," Nat. Nanotechnol., Vol. 12, 889-894, 2017.
    doi:10.1038/nnano.2017.126

    2. Wang, K., H. Qian, Z. Liu, and P. K. L. Yu, "Second-order nonlinear susceptibility enhancement in gallium nitride nanowires (Invited)," Progress In Electromagnetics Research, Vol. 168, 25-30, 2020.
    doi:10.2528/PIER20072201

    3. Miroshnichenko, A. E., S. Flach, and Y. S. Kivshar, "Fano resonances in nanoscale structures," Rev. Mod. Phys., Vol. 82, 2257-2298, 2010.
    doi:10.1103/RevModPhys.82.2257

    4. Lezec, H. J., A. Degiron, E. Devaux, R. A. Linke, L. Martin-Moreno, F. J. Garcia-Vidal, and T. W. Ebbesen, "Beaming light from a subwavelength aperture," Science, Vol. 297, 820-822, 2002.
    doi:10.1126/science.1071895

    5. Prodan, E., C. Radloff, N. J. Halas, and P. Nordlander, "A hybridization model for the plasmon response of complex nanostructures," Science, Vol. 302, 419-422, 2003.
    doi:10.1126/science.1089171

    6. Sun, J. C., T. Wang, Z. Jafari, and I. De Leon, "High-Q plasmonic crystal laser for ultra-sensitive biomolecule detection," IEEE J. Sel. Topics Quantum Electron., Vol. 27, 4601407, 2021.

    7. Tao, T., T. Zhi, B. Liu, J. Dai, Z. Zhuang, Z. Xie, P. Chen, F. Ren, D. Chen, Y. Zheng, and R. Zhang, "Manipulable and hybridized, ultralow-threshold lasing in a plasmonic laser using elliptical InGaN/GaN nanorods," Adv. Func. Mater., Vol. 27, 1703198, 2017.
    doi:10.1002/adfm.201703198

    8. Losurdo, M., Y. Gutiérrez, A. Suvorova, M. M. Giangregorio, S. Rubanov, A. S. Brown, and F. Moreno, "Gallium plasmonic nanoantennas unveiling multiple kinetics of hydrogen sensing, storage, and spillover," Adv. Mater., Vol. 33, 2100500, 2021.
    doi:10.1002/adma.202100500

    9. Song, M., D. Wang, Z. A. Kudyshev, Y. Xuan, Z. Wang, A. Boltasseva, V. M. Shalaev, and A. V. Kildishev, "Enabling optical steganography, data storage, and encryption with plasmonic colors," Laser Photonics Rev., Vol. 15, 2000343, 2021.
    doi:10.1002/lpor.202000343

    10. Creel, E. B., E. R. Corson, J. Eichhorn, R. Kostecki, J. J. Urban, and B. D. McCloskey, "Directing selectivity of electrochemical carbon dioxide reduction using plasmonics," ACS Energy Letters, Vol. 4, 1098-1105, 2019.
    doi:10.1021/acsenergylett.9b00515

    11. Christopher, P., H. L. Xin, and S. Linic, "Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures," Nat. Chem., Vol. 3, 467-472, 2011.
    doi:10.1038/nchem.1032

    12. Raja, W., A. Bozzola, P. Zilio, E. Miele, S. Panaro, H. Wang, A. Toma, A. Alabastri, F. De Angelis, and R. Proietti Zaccaria, "Broadband absorption enhancement in plasmonic nanoshells-based ultrathin microcrystalline-Si solar cells," Sci. Rep., Vol. 6, 1-11, 2016.
    doi:10.1038/srep24539

    13. Ma, R. M., R. F. Oulton, V. J. Sorger, G. Bartal, and X. A. Zhang, "Room-temperature sub-diffraction-limited plasmon laser by total internal reflection," Nat. Mater., Vol. 10, 110-113, 2011.
    doi:10.1038/nmat2919

    14. Azzam, S. I., A. V. Kildishev, R. M. Ma, C. Z. Ning, R. Oulton, V. M. Shalaev, M. I. Stockman, J. L. Xu, and X. Zhang, "Ten years of spasers and plasmonic nanolasers," Light.: Sci. Appl., Vol. 9, 1-21, 2020.
    doi:10.1038/s41377-020-0319-7

    15. Gentile, F., M. L. Coluccio, R. P. Zaccaria, M. Francardi, G. Cojoc, G. Perozziello, R. Raimondo, P. Candeloro, and E. Di Fabrizio, "Selective on site separation and detection of molecules in diluted solutions with super-hydrophobic clusters of plasmonic nanoparticles," Nanoscale, Vol. 6, 8208-8225, 2014.
    doi:10.1039/C4NR00796D

    16. Yang, A. K., M. D. Huntington, M. F. Cardinal, S. S. Masango, R. P. van Duyne, and T. W. Odom, "Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing," ACS Nano, Vol. 8, 7639-7647, 2014.
    doi:10.1021/nn502502r

    17. Chen, J., Q. Zhang, C. Peng, C. Tang, X. Shen, L. Deng, and G. S. Park, "Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing," IEEE Photon. Technol. Lett., Vol. 30, 728-731, 2018.
    doi:10.1109/LPT.2018.2814216

    18. Wu, D., R. Li, Y. Liu, Z. Yu, L. Yu, L. Chen, C. Liu, R. Ma, and H. Ye, "Ultra-narrow band perfect absorber and its application as plasmonic sensor in the visible region," Nanoscale Research Letters, Vol. 12, 1-11, 2017.
    doi:10.1186/s11671-016-1773-2

    19. Chen, C., G.Wang, Z. Zhang, and K. Zhang, "Dual narrow-band absorber based on metal-insulator-metal configuration for refractive index sensing," Opt. Lett., Vol. 43, 3630-3633, 2018.
    doi:10.1364/OL.43.003630

    20. Jiang, N., X. Zhuo, and J. Wang, "Active plasmonics: Principles, structures and applications," Chem. Rev., Vol. 118, 3054-3099, 2018.
    doi:10.1021/acs.chemrev.7b00252

    21. Proietti Zaccaria, R., A. Alabastri, F. De Angelis, G. Das, C. Liberale, A. Toma, A. Giugni, L. Razzari, M. Malerba, H. B. Sun, and E. Di Fabrizio, "Fully analytical description of adiabatic compression in dissipative polaritonic structures," Phys. Rev. B, Vol. 86, 035410, 2012.
    doi:10.1103/PhysRevB.86.035410

    22. Duan, Q., Y. Liu, S. Chang, H. Chen, and J. Chen, "Surface plasmonic sensors: Sensing mechanism and recent applications," Sensors, Vol. 21, 5262, 2021.
    doi:10.3390/s21165262

    23. Špačková, B., P. Wrobel, M. Bocková, and J. Homola, "Optical biosensors based on plasmonic nanostructures: A review," Proceedings of the IEEE, Vol. 104, 2380-2408, 2016.
    doi:10.1109/JPROC.2016.2624340

    24. Kasani, S., K. Curtin, and N. Wu, "A review of 2D and 3D plasmonic nanostructure array patterns: Fabrication, light management and sensing applications," Nanophotonics, Vol. 8, 2065-2089, 2019.
    doi:10.1515/nanoph-2019-0158

    25. Perahia, R., T. P. M. Alegre, A. H. Safavi-Naeini, and O. Painter, "Surface-plasmon mode hybridization in subwavelength microdisk lasers," Appl. Phys. Lett., Vol. 95, 201114, 2009.
    doi:10.1063/1.3266843

    26. Cheng, P. J., Z. T. Huang, J. H. Li, B. T. Chou, Y. H. Chou, W. C. Lo, K. P. Chen, T. C. Lu, and T. R. Lin, "High performance plasmonic nanolasers with a nanotrench defect cavity for sensing applications," ACS Photonics, Vol. 5, 2638-2644, 2018.
    doi:10.1021/acsphotonics.8b00337

    27. Park, S. J., Y. D. Kim, H. W. Lee, H. J. Yang, J. Y. Cho, Y. K. Kim, and H. Lee, "Enhancement of light extraction efficiency of OLEDs using Si3N4-based optical scattering layer," Opt. Express, Vol. 22, 12392-12397, 2014.
    doi:10.1364/OE.22.012392

    28. Amiria, I. S., R. Zakaria, and P. Yupapin, "Manipulating of nanometer spacing dual-wavelength by controlling the apodized grating depth in microring resonators," Results in Physics, Vol. 12, 32-37, 2019.
    doi:10.1016/j.rinp.2018.11.043

    29. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370-4379, 1972.
    doi:10.1103/PhysRevB.6.4370

    30. Fawzy, S. M., A. M. Mahmoud, Y. I. Ismail, and N. K. Allam, "Novel silicon bipodal cylinders with controlled resonances and their use as beam steering metasurfaces," Sci. Rep., Vol. 11, 13635, 2021.
    doi:10.1038/s41598-021-93041-x

    31. Azzam, S. I., V. M. Shalaev, A. Boltasseva, and A. V. Kildishev, "Formation of bound states in the continuum in hybrid plasmonic-photonic systems," Phys. Rev. Lett., Vol. 121, 253901, 2018.
    doi:10.1103/PhysRevLett.121.253901

    32. Christ, A., S. G. Tikhodeev, N. A. Gippius, J. Kuhl, and H. Giessen, "Waveguide-plasmon polaritons: Strong coupling of photonic and electronic resonances in a metallic photonic crystal slab," Phys. Rev. Lett., Vol. 91, 183901, 2003.
    doi:10.1103/PhysRevLett.91.183901

    33. Wang, H., H. Y. Wang, A. Bozzola, A. Toma, S. Panaro, W. Raja, A. Alabastri, L. Wang, Q. D. Chen, H. L. Xu, F. De Angelis, H. B. Sun, and R. P. Zaccaria, "Dynamics of strong coupling between J-aggregates and surface plasmon polaritons in subwavelength hole arrays," Adv. Funct. Mat., Vol. 26, 6198-6205, 2016.
    doi:10.1002/adfm.201601452

    34. Wang, H., A. Toma, H. Y. Wang, A. Bozzola, E. Miele, A. Haddadpour, G. Veronis, F. De Angelis, L. Wang, Q. D. Chen, H. L. Xu, H. B. Sun, and R. P. Zaccaria, "The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays," Nanoscale, Vol. 8, 13445-13453, 2016.
    doi:10.1039/C6NR01588C

    35. Abutoama, M. and I. Abdulhalim, "Angular and intensity modes self-referenced refractive index sensor based on thin dielectric grating combined with thin metal film," IEEE J. Sel. Topics Quantum Electron., Vol. 23, 4600309, 2017.
    doi:10.1109/JSTQE.2016.2520878

    36. Zhou, Y., X. Li, S. Li, Z. Guo, P. Zeng, J. He, D. Wang, R. Zhang, M. Lu, S. Zhang, and X. Wu, "Symmetric guided-mode resonance sensors in aqueous media with ultrahigh figure of merit," Opt. Express, Vol. 27, 34788-34802, 2019.
    doi:10.1364/OE.27.034788

    37. Zhu, S. Y., H. L. Li, M. S. Yang, and S. W. Pang, "Highly sensitive detection of exosomes by 3D plasmonic photonic crystal biosensor," Nanoscale, Vol. 10, 19927-19936, 2018.
    doi:10.1039/C8NR07051B

    38. Nair, S., C. Escobedo, and R. G. Sabat, "Crossed surface relief gratings as nanoplasmonic biosensors," ACS Sensors, Vol. 2, 379-385, 2017.
    doi:10.1021/acssensors.6b00696

    39. Chen, J., Q. Zhang, C. Peng, C. Tang, X. Shen, L. Deng, and G.-S. Park, "Optical cavity-enhanced localized surface plasmon resonance for high-quality sensing," IEEE Photon. Technol. Lett., Vol. 30, 728-731, 2018.
    doi:10.1109/LPT.2018.2814216

    40. Gong, Y. K., S. Wong, A. J. Bennett, D. L. Huffaker, and S. S. Oh, "Topological insulator laser using valley-hall photonic crystals," ACS Photonics, Vol. 7, 2089-2097, 2020.
    doi:10.1021/acsphotonics.0c00521

    41. Liu, N., H. Wei, J. Li, Z. Wang, X. Tian, A. Pan, and H. Xu, "Plasmonic amplification with ultra-high optical gain at room temperature," Sci. Rep., Vol. 3, 1967, 2013.
    doi:10.1038/srep01967

    42. Visser, T. D., H. Blok, and B. Demeulenaere, "Confinement factors and gain in optical amplifiers," IEEE J. Sel. Topics Quantum Electron., Vol. 33, 1763-1766, 1997.
    doi:10.1109/3.631280

    43. Yang, A., T. B. Hoang, M. Dridi, C. Deeb, M. H. Mikkelsen, G. C. Schatz, and T. W. Odom, "Real-time tunable lasing from plasmonic nanocavity arrays," Nat. Commun, Vol. 6, 6936, 2015.
    doi:10.1038/ncomms7936

    44. Verma, R. and B. D. Gupta, "A novel approach for simultaneous sensing of urea and glucose by spr based optical fiber multianalyte sensor," Analyst., Vol. 139, 1449-1455, 2014.
    doi:10.1039/c3an01983g

    45. Ge, C., M. Lu, S. George, T. A. Flood, C. Wagner, J. Zheng, A. Pokhriyal, J. G. Eden, P. J. Hergenrother, and B. T. Cunningham, "External cavity laser biosensor," Lab Chip, Vol. 13, 1247-1256, 2013.
    doi:10.1039/c3lc41330f

    46. Xu, Y., P. Bai, X. Zhou, Y. Akimov, C. E. Png, L. K. Ang, W. Knoll, and L.Wu, "Optical refractive index sensors with plasmonic and photonic structures: Promising and inconvenient truth," Adv. Opt. Mater., Vol. 7, 1801422, 2019.

    47. Elshorbagy, M. H., A. Cuadrado, G. González, F. J. González, and J. Alda, "Performance improvement of refractometric sensors through hybrid plasmonic-Fano resonances," J. Lightwave Technol., Vol. 37, 2905-2913, 2019.
    doi:10.1109/JLT.2019.2906933

    48. Zhang, M., M. Lu, C. Ge, and B. T. Cunningham, "Plasmonic external cavity laser refractometric sensor," Opt. Express, Vol. 22, 20347-20357, 2014.
    doi:10.1364/OE.22.020347

    49. Shen, Y., J. Zhou, T. Liu, Y. Tao, R. Jiang, M. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, and J. Wang, "Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit," Nat. Commun., Vol. 4, 2381, 2013.
    doi:10.1038/ncomms3381