Vol. 173

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues

Tamm States and Gap Topological Numbers in Photonic Crystals (Invited Paper)

By Junhui Cao, Alexey V. Kavokin, and Anton V. Nalitov
Progress In Electromagnetics Research, Vol. 173, 141-149, 2022


We introduce the concept of gap Zak or Chern topological invariants for photonic crystals of various dimensionalities. Specifically, we consider a case where Tamm states are formed at an interface of two semi-infinite Bragg mirrors and derive the formulism for gap Zak phases of two constituent Bragg mirrors. We demonstrate that gap topological numbers are instrumental in studies of interface states both in conventional and photonic crystals.


Junhui Cao, Alexey V. Kavokin, and Anton V. Nalitov, "Tamm States and Gap Topological Numbers in Photonic Crystals (Invited Paper)," Progress In Electromagnetics Research, Vol. 173, 141-149, 2022.


    1. Xiao, D., M.-C. Chang, and Q. Niu, "Berry phase effects on electronic properties," Rev. Mod. Phys., Vol. 82, 1959-Jul. 2007, 2010.

    2. Berry, M. V., "Quantal phase factors accompanying adiabatic changes," Proc. R. Soc. Lond., Vol. 392, No. 1802, 45-57, 1996.

    3. Qiang, W., X. Meng, L. Hui, S. Zhu, and C. T. Chan, "Measurement of the zak phase of photonic bands through the interface states of metasurface/photonic crystal," Physical Review B, Vol. 93, No. 4, 041415.1-041415.5, 2016.

    4. Gao, W. S., M. Xiao, C. T. Chan, and W. Y. Tam, "Determination of zak phase by reflection phase in 1D photonic crystals," Optics Letters, Vol. 40, No. 22, 5259, 2015.

    5. Ozawa, T., H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, "Topological photonics," Rev. Mod. Phys., Vol. 91, 015006, Mar. 2019.

    6. Wang, F. and Y. Ran, "Nearly flat band with chern number c = 2 on the dice lattice," Phys. Rev. B, Vol. 84, 241103, Dec. 2011.

    7. Hatsugai, Y., T. Fukui, and H. Aoki, "Topological analysis of the quantum hall effect in graphene: Dirac-fermi transition across van hove singularities and edge versus bulk quantum numbers," Phys. Rev. B, Vol. 74, 205414, Nov. 2006.

    8. Kavokin, A., Microcavities. Number No. 16 in Series on Semiconductor Science and Technology, Oxford University Press, Oxford, New York, 2007, OCLC: ocn153553936.

    9. Afinogenov, B. I., V. O. Bessonov, A. A. Nikulin, and A. A. Fedyanin, "Observation of hybrid state of tamm and surface plasmon-polaritons in one-dimensional photonic crystals," Applied Physics Letters, Vol. 103, No. 6, 1800, 2013.

    10. Sasin, M. E., R. P. Seisyan, M. A. Kalitteevski, S. Brand, R. A. Abram, J. M. Chamberlain, A. Y. Egorov, A. P. Vasil'Ev, V. S. Mikhrin, and A. V. Kavokin, "Tamm plasmon polaritons: Slow and spatially compact light," Applied Physics Letters, Vol. 92, No. 25, 824, 2008.

    11. Kavokin, A. V., I. A. Shelykh, and G. Malpuech, "Lossless interface modes at the boundary between two periodic dielectric structures," Physical Review B, Vol. 72, No. 23, 233102, Dec. 2005.

    12. Su, Y., C. Y. Lin, R. C. Hong, W. X. Yang, and R. K. Lee, "Lasing on surface states in vertical-cavity surface-emission lasers," Optics Letters, Vol. 39, No. 19, 2014.

    13. Symonds, C., G. Lheureux, J. P. Hugonin, J. J. Greffet, and J. Bellessa, "Confined tamm plasmon lasers," Nano Letters, Vol. 13, No. 7, 3179, 2013.

    14. Symonds, C., A. Lematre, E. Homeyer, J. C. Plenet, and J. Bellessa, "Emission of Tamm plasmon/exciton polaritons," Applied Physics Letters, Vol. 95, No. 15, 151114-151114-3, 2009.

    15. Kavokin, A., I. Shelykh, and G. Malpuech, "Optical Tamm states for the fabrication of polariton lasers," Applied Physics Letters, Vol. 87, No. 26, 193, 2005.

    16. Henriques, J. C. G., T. G. Rappoport, Y. V. Bludov, M. I. Vasilevskiy, and N. M. R. Peres, "Topological photonic Tamm states and the Su-Schrieffer-Heeger model," Phys. Rev. A, Vol. 101, 043811, Apr. 2020.

    17. Xiao, M., Z. Q. Zhang, and C. T. Chan, "Surface impedance and bulk band geometric phases in one-dimensional systems," Phys. Rev. X, Vol. 4, 021017, Apr. 2014.

    18. Zak, J., "Berry's phase for energy bands in solids," Physical Review Letters, Vol. 62, No. 23, 2747-2750, Jun. 1989.

    19. Ryder, L. H., "The optical berry phase and the gauss-bonnet theorem," European Journal of Physics, Vol. 12, No. 1, 15, 1991.

    20. Holstein, B. R., "The adiabatic theorem and Berry's phase," American Journal of Physics, 57, 1989.

    21. Wang, H.-X., G.-Y. Guo, and J.-H. Jiang, "Band topology in classical waves: Wilsonloop approach to topological numbers and fragile topology," New Journal of Physics, Vol. 21, No. 9, 093029, Sep. 2019.

    22. Gubarev, F. V. and V. I. Zakharov, "The Berry phase and monopoles in non-Abelian gauge theories," International Journal of Modern Physics A, Vol. 17, No. 2, 157-174, 2002.

    23. Kondo, K.-I., "Wilson loop and magnetic monopole through a non-Abelian stokes theorem," Physical Review D, Vol. 77, No. 8, 284-299, 2008.