Vol. 174

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2022-06-20

Bessel Beam Generated by the Zero-Index Metalens

By Fusheng Deng, Zhiwei Guo, Mina Ren, Xiaoqiang Su, Lijuan Dong, Yan Hong Liu, Yun Long Shi, and Hong Chen
Progress In Electromagnetics Research, Vol. 174, 89-106, 2022
doi:10.2528/PIER22050401

Abstract

Bessel beam is an important propagation-invariant optical field. The size and shape of its central spot remain unchanged in the long-distance transmission process, which has a wide application prospect. In this paper, we find that zero-index media (ZIM) metalen can be designed to realize the unique Bessel beam. On the one hand, based on the metal-dielectric multilayered structure with sub-wavelength unit cells, the anisotropic epsilon-near-zero media (ENZ) metalen is proposed for generating the robust Bessel beam, which is immune to the defects placed in the transmission path or the inside of the structure. The ZIM metalens uncover that ENZ media provide a new way to generate Bessel beams beyond the conventional convex prisms. On the other hand, with the help of the uniform field distribution of ZIM, enhanced (multi-channel) Bessel beams based on multiple point sources (exit surfaces) are studied in the isotropic ENZ metalens. In addition, the Bessel beam generated by the ZIM metalen has also been extend to the epsilon-mu-near zero metamaterial realized by two dimensional photonic crystals. Our results not only provide a new way to generate Bessel beam based on the ZIM metalens, but also may enable their use in some optical applications, such as in fluorescence microscopy imaging, particle trapping, and wave-front tailoring.

Citation


Fusheng Deng, Zhiwei Guo, Mina Ren, Xiaoqiang Su, Lijuan Dong, Yan Hong Liu, Yun Long Shi, and Hong Chen, "Bessel Beam Generated by the Zero-Index Metalens," Progress In Electromagnetics Research, Vol. 174, 89-106, 2022.
doi:10.2528/PIER22050401
http://www.jpier.org/PIER/pier.php?paper=22050401

References


    1. Engheta, N. and R. W. Ziolkowsky, Metamaterials, Physics and Engineering Exploration, JohnWiley and Sons, 2006.

    2. Silveirinha, M. and N. Engheta, "Tunneling of electromagnetic energy through subwavelength channels andbends using ε-near-zero materials," Phys. Rev. Lett., Vol. 97, 157403, 2006.

    3. Edwards, B., A. Alù, M. E. Young, M. Silveirinha, and N. Engheta, "Experimental verification of epsilon-nearzero metamaterial coupling and energy squeezing using a microwave waveguide," Phys. Rev. Lett., Vol. 100, No. 3, 033903, 2008.

    4. Liu, R., Q. Cheng, T. Hand, J. J. Mock, T. J. Cui, S. A. Cummer, and D. R. Smith, "Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies," Phys. Rev. Lett., Vol. 100, No. 2, 023903, 2008.

    5. Adams, D. C., S. Inampudi, T. Ribaudo, D. Slocum, S. Vangala, N. A. Kuhta, W. D. Goodhue, V. A. Podolskiy, and D. Wasserman, "Funneling light through a subwavelength aperture with epsilon-near-zero materials," Phys. Rev. Lett., Vol. 107, 133901, 2011.

    6. Subramania, G., A. J. Fischer, and T. S. Luk, "Optical properties of metal-dielectric based epsilon near zerometamaterials," Appl. Phys. Lett., Vol. 101, 241107, 2012.

    7. Maas, R., J. Parsons, N. Engheta, and A. Polman, "Experimental realization of an epsilon-near-zero metamaterial at visible wavelengths," Nat. Photon., Vol. 7, No. 11, 907-912, 2013.

    8. Yang, X., C. Hu, H. Deng, D. Rosenmann, D. A. Czaplewski, and J. Gao, "Experimental demonstration of near infrared epsilon-near-zero multilayer metamaterial slabs," Opt. Express, Vol. 21, 23631, 2013.

    9. Engheta, N., "Materials science. Pursuing near-zero response," Science, Vol. 340, 286, 2013.

    10. Pacheco-Peña, V., V. Torres, B. Orazbayev, M. Beruete, M. Navarro-Cía, M. Sorolla Ayza, and N. Engheta, "Mechanical 144 GHz beam steering with all-metallic epsilon-near-zero lens antenna," Appl. Phys. Lett., Vol. 105, 243503, 2014.

    11. Pacheco-Peña, V., V. Torres, M. Beruete, M. Navarro-Cía, and N. Engheta, "ϵ-near-zero (ENZ) graded index quasi-optical devices: Steering and splitting millimeter waves," J. Opt., Vol. 16, 094009, 2014.

    12. Pacheco-Peña, V., N. Engheta, S. Kuznetsov, A. Gentselev, and M. Beruete, "Experimental realization of an epsilon-near-zero graded-index metalens at terahertz frequencies," Phys. Rev. Appl., Vol. 8, 034036, 2017.

    13. Niu, X., X. Hu, S. Chu, and Q. Gong, "Epsilon-near-zero photonics: A new platform for integrated devices," Adv. Opt. Mater., Vol. 6, 1701292, 2018.

    14. Pollard, R. J., A. Murphy, W. R. Hendren, P. R. Evans, R. Atkinson, G. A.Wurtz, A. V. Zayats, and V. A. Podolskiy, "Optical nonlocalities and additional waves in epsilon-near-zero metamaterials," Phys. Rev. Lett., Vol. 102, 127405, 2009.

    15. Zhou, B., H. Li, X. Y. Zou, and T. J. Cui, "Broadband and high-gain planar Vivaldi antennas based on inhomogeneous anisotropic zero-index metamaterials," Progress In Electromagnetics Research, Vol. 120, 235-247, 2011.

    16. Gao, J., L. Sun, H. Deng, C. J. Mathai, S. Gangopadhyay, and X. Yang, "Experimental realization of epsilonnear-zero metamaterial stacks with metal-dielectric multilayers," Appl. Phys. Lett., Vol. 103, 051111, 2013.

    17. Alù, A., M. G. Silveirinha, A. Salandrino, and N. Engheta, "Epsilon-near-zero metamaterials and electromagnetic sources: Tailoring the radiation phase pattern," Phys. Rev. B, Vol. 75, 155410, 2007.

    18. Argyropoulos, C., P. Chen, G. D'Aguanno, N. Engheta, and A. Alù, "Boosting optical nonlinearities in ε-near-zero plasmonic channels," Phys. Rev. B, Vol. 85, 045129, 2012.

    19. Hu, S. Y., Z. W. Guo, L. J. Dong, F. S. Deng, H. T. Jiang, and H. Chen, "Enhanced magneto- optical effect in heterostructures composed of epsilon-near-zero materials and truncated photonic crystals," Frontiers in Mater, Vol. 9, 843265, 2022.

    20. Wang, C., C. Qian, H. Hu, L. Shen, Z. J. Wang, H. P. Wang, Z. W. Xu, B. L. Zhang, H. S. Chen, and X. Lin, "Superscattering of light in refractive-index near-zero environments," Progress In Electromagnetics Research, Vol. 168, 15-23, 2020.

    21. Javani, M. H. and M. I. Stockman, "Real and imaginary properties of epsilon-near-zero materials," Phys. Rev. Lett., Vol. 117, 107404, 2016.

    22. Huang, X., Y. Lai, Z. H. Hang, H. Zheng, and C. T. Chan, "Dirac cones induced by accidental degeneracy inphotonic crystals and zero-refractive-index materials," Nat. Mater., Vol. 10, 582, 2011.

    23. Pollès, R., E. Centeno, J. Arlandis, and A. Moreau, "Self-collimation and focusing effects in zero- average indexmetamaterials," Opt. Express, Vol. 19, 6149, 2011.

    24. Moitra, P., Y. Yang, Z. Anderson, I. I. Kravchenko, D. P. Briggs, and J. Valentine, "Realization of an all-dielectric zero index optical metamaterial," Nat. Photon., Vol. 7, 791, 2013.

    25. Li, Y., S. Kita, P. Muñoz, O. Reshef, D. I. Vulis, M. Yin, M. Loncar, and E. Mazur, "On-chip zero indexmaterials," Nat. Photon., Vol. 9, 738, 2015.

    26. Wang, X., H. Jiang, Y Li, C. Yan, F. Deng, Y. Sun, Y. Li, Y. Shi, and H. Chen, "Transport properties of disordered photonic crystals around a Dirac-like point," Opt. Express, Vol. 23, 5126, 2015.

    27. Liberal, I. and N. Engheta, "Near-zero refractive index photonics," Nat. Photon., Vol. 11, 149, 2017.

    28. Guo, Z., H. Jiang, K. Zhu, Y. Sun, Y. Li, and H. Chen, "Focusing and super-resolution with partial cloaking based on linear-crossing metamaterials," Phys. Rev. Appl., Vol. 10, 064048, 2018.

    29. Guo, Z., H. Jiang, and H. Chen, "Linear-crossing metamaterials mimicked by multi-layers with two kinds of single negative materials," J. Phys.: Photon., Vol. 2, 011001, 2020.

    30. Guo, Z., H. Jiang, and H. Chen, "Abnormal wave propagation in tilted linear-crossing metamaterials," Adv. Photon. Res., Vol. 2, 2000071, 2020.

    31. Chen, Y. Q., Z. Guo, Y. Wang, X. Chen, H. Jiang, and H. Chen, "Experimental demonstration of the magnetic field concentration effect in circuit-based magnetic near-zero index media," Opt. Express, Vol. 28, 17064, 2020.

    32. Durnin, J., "Exact solutions for nondiffracting beams. I. The scalar theory," J. Opt. Soc. Am. A, Vol. 4, 651, 1987.

    33. Durnin, J., J. J. Miceli, and J. H. Eberly, "Diffraction-free beams," Phys. Rev. Lett., Vol. 58, 1499, 1987.

    34. Arlt, J., V. Garces-Chavez, W. Sibbett, and K. Dholakia, "Optical micromanipulation using a Bessel light beam," Opt. Commun., Vol. 197, 239, 2001.

    35. Grier, D. G., "A revolution in optical manipulationm," Nature, Vol. 424, 21, 2003.

    36. Matsuoka, Y., Y. Kizuka, and T. Inoue, "The characteristics of laser micro drilling using a Bessel beam," Appl. Phys. A, Vol. 84, 423, 2006.

    37. Dholakia, K. and W. M. Lee, "Optical trapping takes shape: The use of structured light fields," Adv. Atomic. Molecular, Opt. Phys., Vol. 56, 261, 2008.

    38. Woerdemann, M., C. Alpmann, M. Esseling, and C. Denz, "Advanced optical trapping by complex beam shaping," Laser Photon. Rev., Vol. 7, 839, 2013.

    39. Turunen, J., A. Vasara, and A. T. Friberg, "Holographic generation of diffraction-free beams," Appl. Opt., Vol. 27, 3959, 1988.

    40. Salo, J., J. Meltaus, E. Noponen, J. Westerholm, M. Salomaa, A. Lonnqvist, J. Saily, J. Hakli, J. Ala-Laurinaho, and A. Raisanen, "Millimetre-wave bessel beams using computer holograms," Electron. Lett., Vol. 37, 834, 2001.

    41. Meltaus, J., J. Salo, E. Noponen, M. Salomaa, V. Viikari, A. Lonnqvist, T. Koskinen, J. Saily, J. Hakli, J. AlaLaurinaho, J. Mallat, and A. Raisanen, "Millimeter-wave beam shaping using holograms," IEEE Trans. Microwave Theory Tech., Vol. 51, 1274, 2003.

    42. Scott, G. and N. McArdle, "Efficient generation of nearly diffraction-free beams using an axicon," Opt. Eng., Vol. 31, 2640, 1992.

    43. Monk, S., J. Arlt, D. A. Robertson, J. Courtial, and M. J. Padgett, "The generation of bessel beams at millimetrewave frequencies by use of an axicon," Opt. Commun., Vol. 170, 213, 1999.

    44. Golub, I., "Fresnel axicon," Opt. Lett., Vol. 31, 1890, 2006.

    45. Yu, Y. and W. Dou, "Generation of pseudo-bessel beams at THz frequencies by use of binary axicons," Opt. Express, Vol. 17, 888, 2009.

    46. Williams, W. B. and J. B. Pendry, "Generating bessel beams by use of localized modes," J. Opt. Soc. Am. A, Vol. 22, 992, 2005.

    47. Lin, J., J. Dellinger, P. Genevet, B. Cluzel, F. de Fornel, and F. Capasso, "Cosine-Gauss plasmon beam: A localized long-range nondiffracting surface wave," Phys. Rev. Lett., Vol. 109, 093904, 2012.

    48. Salem, M., A. Kamel, and E. Niver, "Microwave bessel beams generation using guided modes," IEEE Trans. Antennas Propag., Vol. 59, 2241, 2011.

    49. Li, Z., K. B. Alici, H. Caglayan, and E. Ozbay, "Generation of an axially asymmetric Bessel-like beam from a metallic subwavelength aperture," Phys. Rev. Lett., Vol. 102, 143901, 2009.

    50. Kurt, H. and M. Turduev, "Generation of a two-dimensional limited-diffraction beam with self- healing ability by annular-type photonic crystals," J. Opt. Soc. Am. B, Vol. 29, 1245, 2012.

    51. Cai, B. G., Y. B. Li, W. X. Jiang, Q. Cheng, and T. J. Cui, "Generation of spatial Bessel beams using holographic metasurface," Opt. Express, Vol. 23, 7593, 2015.

    52. Chen, W. T., M. Khorasaninejad, A. Y. Zhu, J. Oh, R. C. Devlin, A. Zaidi, and F. Capasso, "Generation of wavelength-independent subwavelength Bessel beams using metasurfaces," Light. Sci. Appl., Vol. 6, e16259, 2017.

    53. Wang, Z., S. Dong, W. Luo, M. Jia, Z. Liang, Q. He, S. Sun, and L. Zhou, "High-efficiency generation of Bessel beams with transmissive metasurfaces," Appl. Phys. Lett., Vol. 112, 191901, 2018.

    54. Ardaneh, K., R. Giust, B. Morel, and F. Courvoisier, "Generation of a Bessel beam in FDTD using a cylindrical antenna," Opt. Express, Vol. 28, 2895, 2020.

    55. Yu, Y. Z. and W. B. Dou, "Properties of approximate Bessel beams at millimeter wavelengths generated by fractal conical lens," Progress In Electromagnetics Research, Vol. 87, 105-115, 2008.

    56. Luan, J., S. Yang, D. Liu, and M. Zhang, "Polarization and direction-controlled asymmetric multifunctional metadevice for focusing, vortex and Bessel beam generation," Opt. Express, Vol. 28, 3732, 2020.

    57. Goutsoulas, M., D. Bongiovanni, D. Li, Z. Chen, and N. K. Efremidis, "Tunable self-similar Bessel- like beams of arbitrary order," Opt. Lett., Vol. 45, 1830, 2020.

    58. Guo, Z. W., H. T. Jiang, Y. Sun, Y. H. Li, and H. Chen, "Actively controlling the topological transition of dispersionbased on electrically controllable metamaterials," Appl. Sci., Vol. 8, 596, 2018.

    59. Guo, Z. W., H. T. Jiang, and H. Chen, "Hyperbolic metamaterials: From dispersion manipulationto applications," J. Appl. Phys., Vol. 127, 071101, 2020.

    60. Palik, E. D., Handbook of Optical Constants of Solids, Academic, 1998.

    61. Johnson, P. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370, 1972.

    62. Wu, Y., X. Hu, F. Wang, J. Yang, C. Lu, Y. Liu, H. Yang, and Q. Gong, "Ultracompact and unidirectional on-chip light source based on epsilon-near-zero materials in an optical communication range," Phys. Rev. Applied, Vol. 12, 054021, 2019.

    63. Vassant, S., A. Archambault, F. Marquier, F. Pardo, U. Gennser, A. Cavanna, J. L. Pelouard, and J. J. Greffet, "Epsilon-near-zero mode for active optoelectronic devices," Phys. Rev. Lett., Vol. 109, 237401, 2012.

    64. Guo, Z. W., Y. Long, H. T. Jiang, J. Ren, and H. Chen, "Anomalous unidirectional excitation of high-k hyperbolic modes using all-electric metasources," Adv. Photon., Vol. 3, 036001, 2021.

    65. Guo, Z. W., H. T. Jiang, and H. Chen, "Zero-index and hyperbolic metacavities: Fundamentals and applications," J. Phys. D: Appl. Phys., Vol. 55, 083001, 2022.