PIER
 
Progress In Electromagnetics Research
ISSN: 1070-4698, E-ISSN: 1559-8985
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 22 > pp. 51-84

The Influence of Spatial Distributions of Inhomogeneities on Effective Dielectric Properties of Composite Materials (Effective Field Approach)

By S. K. Kanaun and D. Jeulin

Full Article PDF (588 KB)

Citation:
S. K. Kanaun and D. Jeulin, "The Influence of Spatial Distributions of Inhomogeneities on Effective Dielectric Properties of Composite Materials (Effective Field Approach)," Progress In Electromagnetics Research, Vol. 22, 51-84, 1999.
doi:10.2528/PIER98080703
http://www.jpier.org/PIER/pier.php?paper=9808073

References:
1. Kanaun, S. K. and D. Jeulin, "Effective field method in the problem of electromagnetic wave propagation through a medium with isolated inclusions," Journal of Electromagnetic Waves and Applications, Vol. 11, No. 6, 1531-1566, 1997.
doi:10.1163/156939397X00576

2. Matheron, G., Random Sets and Integral Geometry, John Wiley & Sons, 1975.

3. Jeulin, D., "Random Structure analysis and modelling by mathematical morphology," Proc. CMDS5, Nottingham, 14-20, July 1985, 217-226, Invited Lecture, A. J. M. Spencer (Ed.), A. A. Balkema, Rotterdam, 1987.

4. Lim, H. H., M. E. Veysoglu, S. H. Yueh, R. T. Shin, and J. A. Kong, "Random medium model approach to scattering from a random collection of discrete scatterers," Journal of Electromagnetic Waves and Applications, Vol. 8, No. 7, 801-817, 1994.

5. Jeulin, D. and A. Le Coent, "Morphological modeling of random composites," Proc. CMDS8, Varna, Bulgaria, 11-16, June 1995, 199-206, K. Z. Markov (Ed.), World Scientific Publishing Company, 1996.

6. John, S., "Localization of light," Physics Today, 32-40, May 1991.
doi:10.1063/1.881300

7. Yablonovitch, E., "Photonic band gap structure," J. Opt. Soc. Am. B, Vol. 10, No. 2, 283-295, 1993.
doi:10.1364/JOSAB.10.000283

8. Ho, K. M., C. T. Chan, and C. M. Soukoulis, "Existence of a photonic gap in periodic dielectric structures," Physical Review Letters, Vol. 65, No. 25, 3152-3155, 1990.
doi:10.1103/PhysRevLett.65.3152

9. Sozuer, H. S. and J. W. Haus, "Photonic bands: Convergence problems with the plane-wave method," Physical Review B, Vol. 45, No. 24, 13962-13972, 1992.
doi:10.1103/PhysRevB.45.13962

10. Chew, W. Ch., Waves and Fields in Inhomogeneous Media, Van Nostrand Reinhold, New York, 1990.

11. Gelfand, I. M. and G. E. Shilov, Generalized Functions and Operating with Them, Phys. Math Literature, Moskow, 1958.

12. Bohren, C. F. and D. R. Huffman, Absorption and Scattering of Light by Small Particles, John Wiley & Sons, New York, Chichester Brisbane, Toronto, Singapore, 1983.

13. Kanaun, S. K., "A variational principle of scalar wave diffraction and its application," C.R. Acad. Sci. Paris, t.324, Serie II b, 365-372, 1997.

14. Kanaun, S. K., "Propagation of elastic waves through polycrystalline materials," European Journal of Mechanics, A/Solids, Vol. 15, No. 5, 859-881, 1996.

15. Kunin, I. A., Elastic Medium with Microstructure, Vol. 2, Springer-Verlag, New York, London, Geidelberg, Tokio, 1983.
doi:10.1007/978-3-642-81960-5

16. Lamb, W., D. M. Wood, and N. W. Ashcroft, "Long-wavelength electromagnetic propagation in heterogeneous media," Physical Review B, Vol. 21, No. 6, 2248-2266, 1980.
doi:10.1103/PhysRevB.21.2248

17. Wolfram, S., Mathematica (A System for Doing Mathematics by Computer), Addison-Wesley, 1988.


© Copyright 2014 EMW Publishing. All Rights Reserved