Vol. 2
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2007-11-16
Rigorous Analysis of Uniaxial Discontinuities Microwave Components Using a New Multimodal Variational Formulation
By
Progress In Electromagnetics Research B, Vol. 2, 61-71, 2008
Abstract
Anew multimodal variational formulation (NVMF) analysis is used for a rigorous analysis of four microwave subsystems with multiple discontinuities: one double-step and one quadruplestep empty-ridged waveguide discontinuity, one iris-coupled cavities filter with four resonators and one impedance transformer. The sparameters of each structure are deduced from its total impedance matrix, without cascading the S-parameters of individual discontinuities as with the most methods based on mode-matching technique; the convergence study versus the accessible modes is no long necessary, which makes this passive microwave circuit's analysis and design tool very efficient.
Citation
Désiré Lilonga-Boyenga, Camille Mabika, and Gilbert Okoumou-Moko, "Rigorous Analysis of Uniaxial Discontinuities Microwave Components Using a New Multimodal Variational Formulation," Progress In Electromagnetics Research B, Vol. 2, 61-71, 2008.
doi:10.2528/PIERB07102403
References

1. Ise, K., K. Inoue, and M. Koshiba, "Three dimensional finite element method with edge element of electromagnetic waveguide discontinuities," IEEE Trans.-MTT, Vol. 39, 1289-1295, August 1991.
doi:10.1109/22.85402

2. Lotz, R., J. Ritter, and F. Arndt, "3D subgrid technique for the finite difference method in frequency domain," IEEE-MTT-S Int. Microwave Symp. Digest, 1275-1278, Baltimore, MD, June 1998.

3. Schmidt, R. and P. Russer, "Modeling of cascaded coplanar waveguide discontinuities by mode-matching approach," IEEE Trans.-MTT, Vol. 43, 2910-2917, 1995.
doi:10.1109/22.475655

4. Arndt, F., J. Bornemann, et al. "Modal S-matrix method for optimum design of inductively direct-coupled cavity filters," IEEE Proceeding, Vol. 133, No. 5, Oct. 1986.

5. Soler, F. J. P., F. D. Q. Pereira, J. P. Garcia, D. C. Rebenaque, and A. A. Melcon, "Analysis of inductive waveguide microwave components using alternative port treatment and efficicient fast multipole," Progress In Elecromagnetics Research, Vol. 68, 71-90, 2007.
doi:10.2528/PIER06072001

6. Tao, J. W. and H. Baudrand, "Multimodal variational analysis of uniaxial waveguide discontinuities," IEEE Trans.-MTT, Vol. 39, 506-516, March 1991.
doi:10.1109/22.75293

7. Nanan, J. C., J. W. Tao, H. Baudrand, B. Theron, and S. Vigneron, "At wo-step synthesis of broadband rigged bandpass filters with improved performances," IEEE Trans.-MTT, Vol. 39, 2192-2197, December 1991.
doi:10.1109/22.106564

8. Lilonga-Boyenga, D., J. Tao, and T. H. Vuong, "A new multimodal variational analysis of uniaxial discontinuities in microwaves devices," Proceeding Mediterranean Microwave Symposium MMS’2004, 112-114, Marseille, 2004.

9. Couffignal, P., H. Baudrand, and B. Theron, "A new rigorous method for determination of iris dimensions in dual-mode cavity filters," IEEE Trans.-MTT, Vol. 42, 1314-1320, July 1994.
doi:10.1109/22.299724

10. Lilonga-Boyenga, D., J. Tao, and T. H. Vuong, "Uniaxial discontinuities by a new multimodal variational method --- Application to filter design," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 17, No. 1, 77-82, January 2007.
doi:10.1002/mmce.20200

11. Vuong, T. P., Contribution a l'etude des discontinuites dans les guides metalliques creux --- Applications aux antennes et filtres, These de doctorat INP Toulouse, December 1999.

12. Ilie, M. M., A. Z. Ilie, and B. M. Notaros, "Higher order large-domain FEM modeling of 3-D multiport waveguide structures with arbitrary discontinuities," IEEE Trans.-MTT, Vol. 52, 1608-1614, June 2004.

13. Arndt, F., J. Bornemann, D. Heckmann, C. Pionek, H. Sommerow, and H. Schueler, "Modal S-matrix method for optimum design of inductively direct-coupled cavity filters," IEEE Proceedings, Vol. 133, Pt. H, No. 5, 341-350, October 1986.

14. Arndt, F., T. Sieverding, et al. Optimized-oriented design of rectangular and circular waveguide components with the use of efficient mode-matching simulators in commercial circuit CAD tools (invited article), 37-50, John Wiley & Sons Inc., 1997.