PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 9 > pp. 83-96

ASSESSMENT OF HUMAN HEAD EXPOSURE TO WIRELESS COMMUNICATION DEVICES: COMBINED ELECTROMAGNETIC AND THERMAL STUDIES FOR DIVERSE FREQUENCY BANDS

By T. T. Zygiridis and T. D. Tsiboukis

Full Article PDF (1,303 KB)

Abstract:
In this paper, an integrated and manifold study of the combined electromagnetic and thermal effects, caused by human exposure to microwave radiation is carried out. In essence, we numerically calculate the amount of electromagnetic power absorbed by biological tissues for various exposure conditions and types of emitting sources, utilizing a detailed model of the human head. The severity of the obtained results is evaluated via comparisons with the guidelines of international safety standards, while further insight is gained by investigating the induced thermal effects. The latter are properly quantified through the solution of the bioheat equation, when combined with the outcome of the electromagnetic simulations. Spatial distributions of the corresponding temperature changes are thus calculated, their relation to the dissipated power is established, and the thermal response of human tissues in marginal cases of exposure is predicted.

Citation:
T. T. Zygiridis and T. D. Tsiboukis, "Assessment of Human Head Exposure to Wireless Communication Devices: Combined Electromagnetic and Thermal Studies for Diverse Frequency Bands," Progress In Electromagnetics Research B, Vol. 9, 83-96, 2008.
doi:10.2528/PIERB08071106

References:
1. Kang, X. K., L. W. Li, M. S. Leong, and P. S. Kooi, "A spheroidal vector wave function analysis of field and SAR distributions in a dielectric prolate spheroidal human head model," Progress In Electromagnetics Research, Vol. 22, 149-179, 1999.
doi:10.2528/PIER98090901

2. Li, L. W., M. S. Leong, P. S. Kooi, and T. S. Yeo, "Specific absorption rates in human head due to handset antennas: A comparative study using FDTD method," J. of Electromagn. Waves and Appl., Vol. 14, 987-1000, 2000.

3. Gandhi, O. P., Q.-X. Li, and G. Kang, "Temperature rise for the human head for cellular telephones and for peak SARs prescribed in safety guidelines," IEEE Trans. Microw. Theory Tech., Vol. 49, 1607-1613, 2001.
doi:10.1109/22.942573

4. Kang, X. K., L. W. Li, M. S. Leong, and P. S. Kooi, "A method of moments study of SAR inside spheroidal human head and current distribution along handset wire antennas," J. of Electromagn. Waves and Appl., Vol. 15, 61-75, 2001.
doi:10.1163/156939301X00643

5. Yioultsis, T. V., T. I. Kosmanis, E. P. Kosmidou, T. T. Zygiridis, N. V. Kantartzis, T. D. Xenos, and T. D. Tsiboukis, "A comparative study of the biological effects of various mobile phone and wireless LAN antennas," IEEE Trans. Magn., Vol. 38, 777-780, 2002.
doi:10.1109/20.996201

6. Hirata, A. and T. Shiozawa, "Correlation of maximum temperature increase and peak SAR in the human head due to handset antennas," IEEE Trans. Microw. Theory Tech., Vol. 51, 1834-1841, 2003.
doi:10.1109/TMTT.2003.814314

7. Wang, J., O. Fujiwara, S. Watanabe, and Y. Yamanaka, "Computation with a parallel FDTD system of human-body effect on electromagnetic absorption for portable telephones," IEEE Trans. Microw. Theory Tech., Vol. 52, 53-58, 2004.
doi:10.1109/TMTT.2003.821232

8. Whittow, W. G. and R. M. Edwards, "A study of changes to specific absorption rates in the human eye close to perfectly conducting spectacles within the radio frequency range 1.5 to 3.0 GHz," IEEE Trans. Antennas Propag., Vol. 52, 3207-3212, 2004.
doi:10.1109/TAP.2004.836417

9. Ibrahiem, A., C. Dale, W. Tabbara, and J. Wiart, "Analysis of the temperature increase linked to the power induced by RF source," Progress In Electromagnetics Research, Vol. 52, 23-46, 2005.
doi:10.2528/PIER04062501

10. Kiminami, K., A. Hirata, Y. Horii, and T. Shiozawa, "A study on human body modeling for the mobile terminal antenna design at 400MHz band," J. of Electromagn. Waves and Appl., Vol. 19, 671-687, 2005.
doi:10.1163/1569393053305080

11. Hadjem, A., D. Lautru, C. Dale, M. F. Wong, V. F. Hanna, and J. Wiart, "Study of specific absorption rate (SAR) induced in two child head models and in adult heads using mobile phones," IEEE Trans. Microw. Theory Tech., Vol. 53, 4-11, 2005.
doi:10.1109/TMTT.2004.839343

12. Yoshida, K., A. Hirata, Z. Kawasaki, and T. Shiozawa, "Human head modeling for handset antenna design at 5 GHz band," J. of Electromagn. Waves and Appl., Vol. 19, 401-411, 2005.
doi:10.1163/1569393054139679

13. Li, Q.-X. and O. P. Gandhi, "Thermal implications of the new relaxed IEEE RF safety standard for head exposures to cellular telephones at 835 and 1900 MHz," IEEE Trans. Microw. Theory Tech., Vol. 54, 3146-3154, 2006.
doi:10.1109/TMTT.2006.877050

14. Hirata, A., M. Fujimoto, T. Asano, J. Wang, O. Fujiwara, and T. Shiozawa, "Correlation between maximum temperature increase and peak SAR with different average schemes and masses," IEEE Trans. Electromagn. Compat., Vol. 48, 569-578, 2006.
doi:10.1109/TEMC.2006.877784

15. Kuo, L.-C., Y.-C. Kan, and H.-R. Chuang, "Analysis of a 900/1800-MHz dual-band gap loop antenna on a handset with proximate head and hand model," J. of Electromagn. Waves and Appl., Vol. 21, 107-122, 2007.
doi:10.1163/156939307779391722

16. Togashi, T., T. Nagaoka, S. Kikuchi, K. Saito, S. Watanabe, M. Takahashi, and K. Itoh, "FDTD calculations of specific absorption rate in fetus caused by electromagnetic waves from mobile radio terminal using pregnant woman model," IEEE Trans. Microw. Theory Tech., Vol. 56, 554-559, 2008.
doi:10.1109/TMTT.2007.914625

17. ICNIRP, "Guidelines for limiting exposure to time-varying electric, magnetic, and electromagnetic fields (up to 300 GHz)," Health Phys., Vol. 74, 494-522, 1998.

18., IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95.1-2005, 2005 Edition.

19., IEEE Standard for Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz, IEEE Standard C95.1-1999, 1999 Edition.

20. Taflove, A. and S. C. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method, Artech House, Norwood, MA, 2005.

21. ftp://starview.brooks.af.mil/EMF/dosimetry models.

22. Gabriel, S., R. W. Lau, and C. Gabriel, "The dielectric properties of biological tissues: III. Parametric models for the dielectric spectrum of tissues," Phys. Med. Biol., Vol. 41, 2271-2293, 1996.
doi:10.1088/0031-9155/41/11/003

23. Berenger, J.-P., "A perfectly matched layer for the absorption of electromagnetic waves," J. Comp. Phys., Vol. 114, 185-200, 1994.
doi:10.1006/jcph.1994.1159

24. Ismail, N. H. and A. T. Ibrahim, "Temperature distribution in the human brain during ultrasound hyperthermia," J. of Electromagn. Waves and Appl., Vol. 16, 803-811, 2002.
doi:10.1163/156939302X00165

25. Kivekas, O., J. Ollikainen. T. Lehtiniemi, and P. Vainikainen, "Bandwidth, SAR, and efficiency of internal mobile phone antennas," IEEE Trans. Electromag. Compat., Vol. 46, 71-85, 2004.
doi:10.1109/TEMC.2004.823613


© Copyright 2010 EMW Publishing. All Rights Reserved