PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 11 > pp. 189-204

COMPARISON OF METHODS FOR MODELING UNCERTAINTIES IN A 2D HYPERTHERMIA PROBLEM

By D. Voyer, L. Nicolas, R. Perrussel, and F. Musy

Full Article PDF (348 KB)

Abstract:
Uncertainties in biological tissue properties are weighed in the case of a hyperthermia problem. Statistic methods, experimental design and kriging technique, and stochastic methods, spectral and collocation approaches, are applied to analyze the impact of these uncertainties on the distribution of the electromagnetic power absorbed inside the body of a patient. The sensitivity and uncertainty analyses made with the different methods show that experimental designs are not suitable in this kind of problem and that the spectral stochastic method is the most efficient method only when using an adaptative algorithm.

Citation:
D. Voyer, L. Nicolas, R. Perrussel, and F. Musy, "Comparison of Methods for Modeling Uncertainties in a 2D Hyperthermia Problem," Progress In Electromagnetics Research B, Vol. 11, 189-204, 2009.
doi:10.2528/PIERB08112104

References:
1. Hurt, W. D., J. M. Ziriax, and P. A. Mason, "Variability in EMF permittivity values: Implications for SAR calculations," IEEE Trans. on Biomedical Engineering, Vol. 47, No. 3, 396-401, 2000.
doi:10.1109/10.827308

2. Garcia-Diaz, A. and D. Philips, Principles of Experimental Design and Analysis, Chapman & Hall, 1995.

3. Koehler, J. and A. Owen, Handbook of Statistics, 261-308, Chapter Computer experiments, Elsevier Science, 1996.

4. Ghanem, R. G. and P. D. Spanos, Stochastic Finite Elements: A Spectral Approach, Springer-Verlag, New York, 1991.

5. Xiu, D. and J. S. Hesthaven, "High-order collocation methods for differentialequations with random inputs," SIAM Journal on Scientific Computing, Vol. 27, No. 3, 1118-1139, 2005.
doi:10.1137/040615201

6. Gerstner, T. and M. Griebel, "Dimension-adaptive tensor-product quadrature," Computing, Vol. 71, No. 1, 65-87, Springer-Verlag, New York, Inc., 2003.
doi:10.1007/s00607-003-0015-5

7., , IFAC, Institute For Applied Physics, http://niremf.ifac.cnr.it/tissprop/.
doi:10.1007/s00607-003-0015-5

8. Stoneman, M. R., M. Kosempa, W. D. Gregory, C. W. Gregory, J. J. Marx, W. Mikkelson, J. Tjoe, and V. Raicu, "Correction of electrode polarization contributions to the dielectric properties of normaland cancerous breast tissues at audio/radiofrequencies," Physical Medecine and Biology, Vol. 52, 6589-6604, 2007.
doi:10.1088/0031-9155/52/22/003

9. Renard, Y. and J. Pommier, "Getfem finite element library,", http://home.gna.org/getfem/.

10. OHagan, T. and M. Kennedy, "Gaussian emulator machine software,", http://www.tonyohagan.co.uk /academic/GEM/index.html.

11. Sobol, I. M., "Sensitivity estimates for non linear mathematical models," Mathematical Modelling and Computational Experiments, Vol. 1, 407-414, 1993.

12. Xiu, D. and G. E. Karniadakis, "The Wiener-Askey polynomial chaos for stochastic differentialequations," SIAM Journal on Scientific Computing, Vol. 24, No. 2, 619-644, 2002.
doi:10.1137/S1064827501387826

13. Zeng, Z. Y. and J. M. Jin, "An efficient calculation of scattering variation due to uncertain geometricaldeviation," Electromagnetics, Vol. 27, No. 7, 387-398, 2007.
doi:10.1080/02726340701572975

14. Klimke, A., "Sparse grid interpolation toolbox,", http://www.ians.uni-stuttgart.de/spinterp/.

15. Klimke, A., Uncertainty modeling using fuzzy arithmetic and sparse grids, Ph.D. thesis, Fakult¨at Mathematik und Physik der Universit¨at Stuttgart, 2006.


© Copyright 2010 EMW Publishing. All Rights Reserved