1. Yee, K. S., "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media ," IEEE Trans. on Antennas and Propagation, Vol. 14, 302-307, 1966.
doi:10.1109/TAP.1966.1138693 Google Scholar
2. Taflove, A., Computational Electrodynamics: The Finitedifference Time-domain Method, Artech House, 1995.
3. Christ, A. and H. L. Hartnagel, "Three-dimensional finitedifference method for the analysis of microwave-device embedding," IEEE Trans. on Microwave Theory and Techniques, Vol. 35, 688-696, 1987.
doi:10.1109/TMTT.1987.1133733 Google Scholar
4. Chu, S. T., W. P. Huang, and S. K. Chaudhuri, "Simulation and analysis of wave-guide based optical integrated-circuits," Computer Physics Communications, Vol. 68, 451-484, Nov. 1991.
doi:10.1016/0010-4655(91)90213-5 Google Scholar
5. Krupezevic, D. V., V. J. Brankovic, and F. Arndt, "Wave-equation FD-TD method for the efficient eigenvalue analysis and S-matrix computation of waveguide structures," IEEE Trans. on Microwave Theory and Techniques, Vol. 41, 2109-2115, 1993.
doi:10.1109/22.260694 Google Scholar
6. Vielva, L. A., J. A. Pereda, A. Prieto, and A. Vegas, "FDTD multimode characterization of waveguide devices using absorbing boundary conditions for propagating and evanescent modes," IEEE Microwave and Guided Wave Letters, Vol. 4, 160-162, 1994.
doi:10.1109/75.294278 Google Scholar
7. Zhao, A. P. and A. V. Raisanen, "Application of a simple and efficient source excitation technique to the FDTD analysis of waveguide and microstrip circuits," IEEE Trans. on Microwave Theory and Techniques, Vol. 44, 1535-1539, 1996.
doi:10.1109/22.536601 Google Scholar
8. Shibata, T. and T. Itoh, "Generalized-scattering-matrix modeling of waveguide circuits using FDTD field simulations," IEEE Trans. on Microwave Theory and Techniques, Vol. 46, 1742-1751, 1998.
doi:10.1109/22.734574 Google Scholar
9. Gwarek, W. K. and M. Celuch-Marcysiak, "Wide-band Sparameter extraction from FD-TD simulations for propagating and evanescent modes in inhomogeneous guides," IEEE Trans. on Microwave Theory and Techniques, Vol. 51, 1920-1928, 2003.
doi:10.1109/TMTT.2003.815265 Google Scholar
10. Wang, S. and F. L. Teixeira, "An equivalent electric field source for wideband FDTD simulations of waveguide discontinuities," IEEE Microwave and Wireless Components Letters, Vol. 13, 27-29, 2003.
doi:10.1109/LMWC.2002.807714 Google Scholar
11. Gwarek, W. K. and M. Celuch-Marcysiak, "Differential method of reflection coefficient extraction from FDTD simulations," IEEE Microwave and Guided Wave Letters, Vol. 6, 215-217, 1996.
doi:10.1109/75.491510 Google Scholar
12. Young, J. L., D. Gaitonde, and J. S. Shang, "Toward the construction of a fourth-order difference scheme for transient EM wave simulation: staggered grid approach ," IEEE Trans. on Antennas and Propagation, Vol. 45, 1573-1580, Nov. 1997.
doi:10.1109/8.650067 Google Scholar
13. Yefet, A. and P. G. Petropoulos, "A staggered fourth-order accurate explicit finite difference scheme for the timedomain Maxwell's equations," Journal of Computational Physics, Vol. 168, 286-315, Apr. 2001.
doi:10.1006/jcph.2001.6691 Google Scholar
14. Krumpholz, M. and L. P. B. Katehi, "MRTD: New time-domain schemes based on multiresolution analysis," IEEE Trans. on Microwave Theory and Techniques, Vol. 44, 555-571, 1996.
doi:10.1109/22.491023 Google Scholar
15. Cao, Q. S., Y. C. Chen, and R. Mittra, "Multiple image technique (MIT) and anistropic perfectly matched layer (APML) in implementation of MRTD scheme for boundary truncations of microwave structures," IEEE Trans. on Microwave Theory and Techniques, Vol. 50, 1578-1589, Jun. 2002.
doi:10.1109/TMTT.2002.1006420 Google Scholar
16. Shao, Z., Z. Shen, Q. He, and G. Wei, "A generalized higher order finite-difference time-domain method and its application in guided-wave problems," IEEE Trans. on Microwave Theory and Techniques, Vol. 51, 856-861, 2003.
doi:10.1109/TMTT.2003.808627 Google Scholar
17. Hirono, T., W. Lui, S. Seki, and Y. Yoshikuni, "A three-dimensional fourth-order finite-difference time-domain scheme using a symplectic integrator propagator," IEEE Trans. on Microwave Theory and Techniques, Vol. 49, 1640-1648, Sep. 2001.
doi:10.1109/22.942578 Google Scholar
18. Sha, W., Z. X. Huang, M. S. Chen, and X. L. Wu, "Survey on symplectic finite-difference time-domain schemes for Maxwell's equations," IEEE Trans. on Antennas and Propagation, Vol. 56, 493-500, Feb. 2008.
doi:10.1109/TAP.2007.915444 Google Scholar
19. Yoshida, H., "Construction of higher order symplectic integrators," Physica D: Nonlinear Phenomena, Vol. 46, 262-268, Nov. 1990. Google Scholar
20. Sha, W., X. L. Wu, Z. X. Huang, and M. S. Chen, "Maxwell's equations, symplectic matrix, and grid," Progress In Electromagnetics Research B, Vol. 8, 115-127, 2008.
doi:10.2528/PIERB08052303 Google Scholar
21. Sha, W., Z. X. Huang, X. L. Wu, and M. S. Chen, "Application of the symplectic finite-difference time-domain scheme to electromagnetic simulation," Journal of Computational Physics, Vol. 225, 33-50, Jul. 2007.
doi:10.1016/j.jcp.2006.11.027 Google Scholar
22. Chen, B., D. G. Fang, and B. H. Zhou, "Modified Berenger PML absorbing boundary condition for FDTD meshes," IEEE Microwave and Guided Wave Letters, Vol. 5, 399-401, Nov. 1995.
doi:10.1109/75.473529 Google Scholar
23. Abarbanel, S. and D. Gottlieb, "A mathematical analysis of the PML method," Journal of Computational Physics, Vol. 134, 357, 1997.
doi:10.1006/jcph.1997.5717 Google Scholar
24. Sullivan, D. M., Electromagnetic Simulation Using the FDTD Method, Wiley-IEEE Press, 2000.