Vol. 16
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2009-07-14
Analytical Computation of the Electromagnetic Field Produced by an Optical Fiber Helix
By
Progress In Electromagnetics Research B, Vol. 16, 189-207, 2009
Abstract
A completely analytical computation of the electromagnetic field produced by an optical fiber helix is presented for the first time. The analysis utilizes the transformation of radially traveling cylindrical waves between two skew cylindrical coordinates systems, that has been previously derived by the author, in order to express the waves radiated by each infinitesimal part of the helix in terms of cylindrical waves around the helix axis and be able to integrate the contributions analytically. Under certain realistic geometrical assumptions, an unperturbed propagation of a single fiber mode is assumed to account for the infinite fiber length, leading to elegant final series expressions in terms of mixed angular-axial Hartree space harmonics, which show clearly the effect of the helical geometry on the field distribution. Analytical formulas are obtained for the field inside and outside the helix cylinder and an interesting two-term decomposition of the outward radiated field is concluded.
Citation
Ioannis D. Chremmos, "Analytical Computation of the Electromagnetic Field Produced by an Optical Fiber Helix," Progress In Electromagnetics Research B, Vol. 16, 189-207, 2009.
doi:10.2528/PIERB09050503
References

1. Chremmos, I. D. and N. K. Uzunoglu, "Transformation of radially traveling cylindrical waves between two skew cylindrical coordinate systems," J. Opt. Soc. Am. A, Vol. 23, 1884-1888, 2006.
doi:10.1364/JOSAA.23.001884

2. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions, Dover, New York, 1972.

3. Chremmos, I. D., N. K. Uzunoglu, and G. Kakarantzas, "Rigorous analysis of the coupling between two nonparallel optical fibers," IEEE J. Lightwave Technol., Vol. 24, 3779-3788, 2006.
doi:10.1109/JLT.2006.881852

4. Tong, L. M., R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, and E. Mazur, "Subwavelength-diameter silica wires for low-loss optical wave guiding," Nature, Vol. 426, 816-819, 2003.
doi:10.1038/nature02193

5. Sumetsky, M., "Basic elements for microfiber photonics: Micro/nanofibers and microfiber coil resonators," J. Lightwave Technology, Vol. 26, 21-27, 2008.
doi:10.1109/JLT.2007.911898

6. Xu, F. and G. Brambilla, "Manufacture of 3-D microfiber coil resonators," IEEE Photon. Technol. Lett., Vol. 19, 1481-1483, 2007.
doi:10.1109/LPT.2007.903762

7. Sumetsky, M., "Optical fiber microcoil resonator," Opt. Express, Vol. 12, 2303-2316, 2004.
doi:10.1364/OPEX.12.002303

8. Tai, C. T., Dyadic Green Functions in Electromagnetic Theory, IEEE Press, 1994.

9. Collin, R. E., Field Theory of Guided Waves, McGraw-Hill, New York, 1960.