Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 24 > pp. 121-129


By B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang

Full Article PDF (546 KB)

This paper presents the design, fabrication and measurement of a dual band switchable metamaterial electromagnetic absorber. The unit cell of the metamaterial consists of dipole mode electric resonators coupled by microwave diodes on one side of a dielectric substrate and metallic ground plane on the other side. Simulation and measurement results show that by forward or reverse biasing the diodes so as to change the coupling between the resonators, the absorber can be dynamically switched to operate in two adjacent frequency bands with nearly perfect peak absorption. Field distribution reveals the physical origin of the switchable performance based on the dipole mode of the electric resonator in the unit cell. It is also demonstrated that the frequency difference between the two bands can be tuned by adjusting the loading positions of the diodes with unchanged high absorption, which helps to design absorbers with specific switchable working frequencies in practical applications.

B. Zhu, C. Huang, Y. Feng, J. Zhao, and T. Jiang, "Dual Band Switchable Metamaterial Electromagnetic Absorber," Progress In Electromagnetics Research B, Vol. 24, 121-129, 2010.

1. Knott, E. F., J. F. Shaeffer, and M. T. Tuley, Radar Cross Section, Artech House, Norwood, 1985.

2. Hatakeyama, K. and T. Inui, "Electromagnetic wave absorber using ferrite absorbing material dispersed with short metal fibers," IEEE Trans. Magn., Vol. 20, No. 5, 1261-1263, September, 1984.

3. Matsumoto, M. and Y. Miyata, "Thin electromagnetic wave absorber for quasi-microwave band containing aligned thin magnetic metal paticles," IEEE Trans. Magn., Vol. 33, No. 6, 4459-4464, November, 1997.

4. Salisbury, W. W., Absorbent Body of Electromagnetic Waves, US Patent 2599944, June 10, 1952.

5. Munk, B. A., Frequency Selective Surfaces, Theory and Design, Wiley, New York, 2000.

6. N. I., S. Sajuyigbe, J. J. Mock, D. R. Smith, W. J. Padilla, "Perfect metamaterial absorber," Phys. Rev. Lett., Vol. 100, No. 20, 207402-1-207402-4, May, 2008.

7. Tao, H., N. I. Landy, C. M. Bingham, X. Zhan, R. D. Averitt, and W. J. Padilla, "A metamaterial absorber for the terahertz regime: Design, fabrication and characterization," Opt. Express, Vol. 16, No. 10, 7181-7188, May, 2008.

8. Landy, N. I., C. M. Bingham, T. Tyler, N. Jokerst, D. R. Smith, and W. J. Padilla, "Design, theory, and measurement of a polarization-insensitive absorber for terahertz imaging," Phys. Rev. B, Vol. 79, No. 12, 125104-1-125104-6, March, 2009.

9. Zhu, B., Z. Wang, Z. Yu, Q. Zhang, J. Zhao, Y. Feng, and T. Jiang, "Planar metamaterial microwave absorber for all wave polarizations," Chin. Phys. Lett., Vol. 26, No. 11, 114102-1-114102-4, November, 2009.

10. Wang, B., T. Koschny, and C. M. Soukoulis, "Wide-angle and polarization-independent chiral metamaterial absorber," Phys. Rev. B, Vol. 80, No. 3, 033108-1-033108-4, July, 2009.

11. Wang, J. F., S. B. Qu, Z. T. Fu, H. Ma, Y. M. Yang, and X. Wu, "Three-dimensional metamaterial microwave absorbers composed of coplanar magnetic and electric resonators," Progress In Electromagnetic Research Letters, Vol. 7, 15-24, 2009.

12. Huang, R., Z. W. Li, L. B. Kong, L. Liu, and S. Matitsine, "Analysis and design of an ultra-thin metamaterial absorber," Progress In Electromagnetic Research B, Vol. 14, 407-429, 2009.

13. Tennant, A. and B. Chambers, "A single-layer tunable microwave absorber using an active FSS," IEEE Microw. Wirel. Compon. Lett., Vol. 14, No. 1, 46-47, January, 2004.

14. Huang, Z., J. Xue, Y. Hou, J. Chu, and D. H. Zhang, "Optical magnetic response from parallel plate metamaterials," Phys. Rev. B, Vol. 74, No. 19, 193105-1-193105-4, November, 2006.

15. Azad, A. K., A. J. Taylor, E. Smirnova, and J. F. O'Hara, "Characterization and analysis of terahertz metamaterials based on rectangular split-ring resonators," Appl. Phys. Lett., Vol. 92, No. 1, 011119-1-011119-3, January, 2008.

16. Chen, H., W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature, Vol. 444, No. 30, 597-600, November, 2006.

© Copyright 2010 EMW Publishing. All Rights Reserved