Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 35 > pp. 213-239


By T. G. Abo-Elnaga, E. A. Abdallah, and H. M. S. El-Hennawy

Full Article PDF (1,326 KB)

The main goal of this paper is to present a design procedure for a flexible compact universal UHF RFID tag antenna suitable for worldwide UHF RFID applications. Systematic design procedure is introduced through the derivation of dipole input impedance general relation using induced EMF method considering wire radius effect. T-matched chart is used to match the tag input impedance with the chip input impedance and finally develop a flow chart to summarize the design procedure. The proposed antenna compactness trend is achieved through applying meandering and Franklin shape to conventional printed dipole antenna. Flexibility trend is achieved through using liquid crystal polymer LCP material as antenna substrate. The proposed antenna covers the frequency band 865 MHz to 1078 MHz and occupies an area of 1306.6 mm2. The computed radar cross section RCS and conjugate match factor CMF insure that the proposed antenna structure is easily detectable and achieves acceptable matching level. Power reflection coefficient PRC is computed, measured and good agreement is obtained. Other antenna parameters such as radiation efficiency, gain and radiation pattern are also calculated. The proposed antenna is cheap, flexible and suitable for UHF RFID universal application.

T. G. Abo-Elnaga, E. A. Abdallah, and H. M. S. El-Hennawy, "Analysis and Design of Universal Compact Flexible UHF RFID Tag Antenna," Progress In Electromagnetics Research B, Vol. 35, 213-239, 2011.

1. Abdallah, E. A., T. G. Abo-Elnaga, and H. M. El-Henawy, Ground slotted phi shape UWB stacked circular polarized antenna for 5.8 GHz RFID reader, PIERS Proceedings, 230-234, Cambridge, USA, Jul. 5--8, 2010.

2. Abdallah, E. A., T. G. Abo-Elnaga, and H. M. El-Henawy, Ground slotted landa shape single feed UWB circular polarized antenna for 2.4 GHz RFID reader, PIERS Proceedings, 225-229, Cambridge, USA, Jul. 5--8, 2010.

3. Abo-Elnaga, T. G., E. A. Abdallah, and H. M. El-Hennawy, UWB circular polarization RFID reader antenna for 2.4 GHz band, PIERS Proceedings, 882-886, Xi'an, China, Mar. 22--26, 2010.

4. Abo-Elnaga, T. G., E. A. Abdallah, and H. M. El-Hennawy, Universal UHF RFID rose reader antenna, PIERS Proceedings, 870-874, Xian, China, Mar. 22--26, 2010.

5. Yao, Y., Y. Sui, X. Chen, and J. Yu, "Planar antenna for RFID tags on metal platform," IEEE International Workshop on Antenna Technology (IWAT), 408-411, 2011.

6. Son, H. W. and S. H. Jeong, "Wideband RFID tag antenna for metallic surfaces using proximity-coupled feed," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 377-380, 2011.

7. Lee, S., H. Jung, H. Choo, and I. Park, "Design of a u-shaped RFID tag antenna with an isotropic radiation characteristic," International Workshop on Antenna Technology (IWAT), 306-309, 2011.

8. Kim, D. and J. Yeo, "Low-profile RFID tag antenna using compact AMC substrate for metallic objects," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 718-720, 2008.

9. Ukkonen, L., L. Sydänheimo, and M. Kivikoski, "Effects of metallic plate size on the performance of microstrip patch-type tag antennas for passive RFID," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 410-413, 2005.

10. Yang, L., S. Basat, and M. Tentzeris, "Design and development of novel inductively coupled RFID antennas," IEEE Antennas and Propagation Society International Symposium, 1035-1038, Jul. 2006.

11. Ukkonen, L., M. Schaffrath, J. A. Kataja, L. Sydanheimo, and M. Kivikoski, "Evolutionary RFID tag antenna design for paper industry applications," International Journal of Radio Frequency Identification Technology and Applications, 107-122, Jan. 2006.

12. Balanis, C. A., Antenna Theory Analysis and Design, John Wiley & Sons, Inc., 2005.

13. Abramowitz, M., Handbook of Mathematical Function, Dec. 1972.

14. Hu, Z., P. H. Cole, and L. Zhang, A method for calculating the resonant frequency of meander-line dipole antenna, Industrial Electronics and Applications (ICIEA) Conference, 1783-1786, Xian, May 2009.

15. Marrocco, G., "The art of UHF RFID antenna design, impedance-matching and size-reduction techniques," IEEE Antennas and Propagation Magazine, Vol. 50, No. 1, 66-79, Feb. 2008.

16. Chu, Q. X., L. Wang, and J. K. Zhou, "A novel folded T-matched dipole in base station," Int. Conf. Microwave and Millimeter Wave Technology (ICMMT'07), 1-3, 2007.

17. Butler, C. H., "The equivalent radius of a narrow conducting strip," IEEE Trans. Antennas Propagation, Vol. 30, No. 4, 755-758, Jul. 1982.

18. Alien Higgs-2 EPC global Class 1 Gen 2 UHF RFID tag IC product overview, Alien Technology, 18220 Butterfield Blvd. Morgan Hill, ww.alientechnology.com.

19. Nishimja, S., K. Nakaro, and T. Makimoto, "Franklin type microstrip line antenna," IEEE Antennas and Propagation Society International Symposium, Vol. 17, 134-137, 1979.

20. Pillai, V., "Impedance matching in RFID tags: To which impedance to match?," IEEE Antennas and Propagation International Symposium, 3505-3508, Jun. 2006.

21. Pouzin, A., T. Vuong, S. Tedjini, M. Pouyet, and J. Perdereau, Measurement of differential radar cross section of UHF RFID tags, PIERS Proceedings, 1232-1234, Moscow, Russia, Aug. 2009.

© Copyright 2010 EMW Publishing. All Rights Reserved