Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 54 > pp. 385-405


By B. V. Ha, P. Pirinoli, R. E. Zich, M. Mussetta, and F. Grimaccia

Full Article PDF (240 KB)

In this paper, a modified Bayesian Optimization Algorithm (BOA), named M-BOA, is proposed to introduce a suitable mutation scheme for the traditional procedure in order to speed up the convergence of the algorithm and to avoid it to be trapped in local minima or to stagnate in suboptimal solutions. The proposed algorithm has been applied both to a specific mathematical test function and to sparse linear antenna arrays design, showing outperforming capabilities not only with respect to the standard BOA, but also with respect to other assessed global optimization methods.

B. V. Ha, P. Pirinoli, R. E. Zich, M. Mussetta, and F. Grimaccia, "Modified Bayesian Optimization Algorithm for Sparse Linear Antenna Design," Progress In Electromagnetics Research B, Vol. 54, 385-405, 2013.

1. Goldberg, D. E., "Genetic Algorithms in Search, Optimization and Machine Learning," Addison-Wiley, 1989.

2. Kennedy, J. and R. C. Eberhart, Swarm Intelligence, Morgan Kaufmann, San Francisco, CA, 2001.

3. Dorigo, M., V. Maniezzo, and A. Colorni, "The ant system: Optimization by a colony of cooperating agents," IEEE Trans. Syst., Man., Cybern. B, Vol. 26, No. 2, 29-41, 1996.

4. Selleri, S., M. Mussetta, P. Pirinoli, R. E. Zich, and M. Matekovits, Differentiated Meta-PSO method for array optimization, Vol. 56, No. 1, 67-75, IEEE Trans. Antennas Prop., Jan. 2008.

5. Ong, Y. S. and A. J. Kean, "Meta-Lamarckian learning in memetic algorithms," IEEE Trans. Evol. Comput., Vol. 8, No. 2, 99-110, Apr. 2004.

6. Basak, A., S. Pal, S. Das, A. Abraham, and V. Snasel, "A modified invasive weed optimization algorithm for time-modulated linear antenna array synthesis," Proc. of IEEE Congress on Evol. Comput. (CEC), 1-8, Barcelona, Spain, Jul. 18-23, 2010.

7. Simon, D., "Biogeography-based optimization," IEEE Trans. Evol. Comput., Vol. 12, No. 6, 702-713, Dec. 2008.

8. Grimaccia, F., M. Mussetta, and R. E. Zich, "Genetic swarm optimization: Self adaptive hybrid evolutionary algorithm for electromagnetics," IEEE Trans. Antennas Prop., Vol. 55, No. 3, 781-785, Mar. 2007.

9. Lee, Y. H., B. J. Cahill, S. J. Porter, and A. C. Marvin, "Novel evolutionary learning technique for multi-objective array antenna optimization," Progress In Electromagnetics Research, Vol. 48, 125-144, 2004.

10. Perez-Lopez, J. R. and J. Basterrechea, "Hybrid particle swarm-based algorithms and their application to linear array synthesis," Progress In Electromagnetics Research, Vol. 90, 63-74, 2009.

11. MÄuhlenbein, H. and G. Paab, "From recombination of genes to the estimation of distributions. I. Binary parameters," Parallel Problem Solving from Nature, Vol. 1141, 178-187, 1996.

12. Pelikan, M., D. E. Goldberg, and E. Cant-Paz, "BOA: The Bayesian optimization algorithm," Proc. of Genetics and Evol. Comput. Conf., GECCO-99, 525-532, Orlando, Florida, USA, Jul. 13-17, 1999.

13. Pelikan, M., Hierarchical Bayesian Optimization Algorithm: Toward a New Generation of Evolutionary Algorithms, Springer, 2005.

14. Ha, B. V., M. Mussetta, P. Pirinoli, and R. E. Zich, "Modified Bayesian optimization algorithm for microstrip filter design," Proc. of IEEE AP-S 2012 Conf., 1-2, Chicago, Illinois, USA, Jul. 8-14, 2012.

15. Yan, K. K. and Y. Lu, "Sidelobe reduction in array-pattern synthesis using genetic algorithm," IEEE Trans. Antennas Prop., Vol. 45, No. 7, 1117-1122, Jul. 1997.

16. Ares-Pena, F. J., A. Rodriguez-Gonzalez, E. Villanueva-Lopez, and S. R. Rengarjan, "Genetic algorithms in the design and optimization of antenna array patterns," IEEE Trans. Antennas Prop., Vol. 47, No. 3, 506-510, 1999.

17. Donelli, M., S. Caorsi, F. D. Natale, G. Franceschini, and A. Massa, "A versatile enhanced genetic algorithm for planar array design," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 11, 1533-1548, 2004.

18. Boeringer, D. W., D. H. Werner, and D. W. Machuga, "A simultaneous parameter adaptation scheme for genetic algorithms with application to phased array synthesis," IEEE Trans. Antennas Prop., Vol. 53, No. 1, 356-371, Jan. 2005.

19. Khodier, M. M. and C. G. Christodoulou, "Linear array geometry synthesis with minimum sidelobe level and null control using particle swarm optimization," IEEE Trans. Antennas Prop., Vol. 53, No. 8, 2674-2679, Aug. 2005.

20. Donelli, M., R. Azaro, L. Fimognari, and A. Massa, "A planar electronically reconfigurable Wi-Fi band antenna based on parasitic microstrip structures," IEEE Antennas and Wireless Prop. Letters, Vol. 6, 623-626, 2007.

21. Gies, D. and Y. Rahmat-Samii, "Particle swarm optimization for reconfigurable phase-differentiated array design," Microw. Opt. Tech. Lett., Vol. 38, No. 3, 168-175, Aug. 2003.

22. Chung, W. W., F. Yang, and A. Z. Elsherbeni, "Linear antenna array synthesis using Taguchi's method: A novel optimization technique in electromagnetics," IEEE Trans. Antennas Prop., Vol. 55, No. 3, 723-730, Mar. 2007.

23. Liu, Y., Z. Nie, and Q. H. Liu, "Reducing the number of elements in a linear antenna array by the matrix pencil method," IEEE Trans. Antennas Prop., Vol. 56, No. 9, 2955-2962, 2008.

24. Liu, Y., Q. H. Liu, and Z. Nie, "Reducing the number of elements in the synthesis of shaped-beam patterns by forward-backward matrix pencil method," IEEE Trans. Antennas Prop., Vol. 58, No. 2, 604-608, Feb. 2010.

25. Zhang, W., L. Li, and F. Li, "Reducing the number of elements in linear and planar antenna arrays with sparseness constrained optimization," IEEE Trans. Antennas Prop., Vol. 59, No. 8, 3106-3111, Aug. 2011.

26. Chan, C.-Y. and P. M. Goggans, "Using bayesian inference for linear antenna array design," IEEE Trans. Antennas Prop., Vol. 59, No. 9, 3211-3217, Sep. 2011.

27. Pearl, J., "Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference," Morgan Kaufmann, 1988.

28. Heckerman, D., D. Geiger, and D. M. Chickering, "Learning Bayesian networks: The combination of knowledge and statistical data,", Technical Report MSR-TR-94-09, Microsoft Research, Redmond, WA, 1994.

29. Baluja, S., "Population based incremental learning: A method or integrating genetic search based function optimization and competitive learning,", Technical Report No. CMUCS-94-163, Carnegie Mellon University, Pittsburgh, PA, 1994.

30. Harik, , G. R., F. G. Lobo, and D. E. Goldberg, "The compact genetic algorithm," IEEE Trans. Evol. Comput., Vol. 3, No. 4, 287-297, Nov. 1999.

© Copyright 2010 EMW Publishing. All Rights Reserved