Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 49 > pp. 363-387


By T. Gupta, M. J. Akhtar, and A. Biswas

Full Article PDF (391 KB)

A unit cell based numerical approach to model the metal powders and metal-dielectric composites at microwave frequencies is proposed. The unit cell based numerical modeling helps to compute the equivalent reflection and transmission coefficients of these materials, which are commonly used measured parameters at RF and microwave frequencies. The computation of the reflection and transmission coefficients of these artificial dielectric samples also facilitates the determination of their effective constitutive properties, defined in terms of the effective permittivity and permeability, using the reflection transmission approach. The applicability of the proposed unit cell method is first verified for some mixed dielectrics using the classical mixing formulas, and the standard waveguide approach. Once the validity of the proposed approach is ascertained, the effective constitutive properties of copper powder is determined. A detailed parametric analysis is also carried out in order to study the effect of various parameters such as the packing fraction, the grain size and the gap between adjacent spherical shaped metal particles, on the effective constitutive properties of the copper powder compact. This detailed analysis is quite helpful in order to optimize various parameters of the microwave sintering of metal powders and metal-dielectric composites before the actual start of the sintering process using microwaves.

T. Gupta, M. J. Akhtar, and A. Biswas, "A Unit Cell Approach to Model and Characterize the Metal Powders and Metal-Dielectric Composites at Microwave Frequencies," Progress In Electromagnetics Research B, Vol. 49, 363-387, 2013.

1. Meredith, R. J., Engineers Handbook of Industrial Microwave Heating, IET Power & Energy Series, London, UK, 1998.

2. Ku, , H. S.-L., "Productivity improvement of composites processing through the use of industrial microwave technologies," Progress In Electromagnetics Research, Vol. 66, 267-285, 2006.

3. Metaxas, A. C. and R. J. Meredith, Industrial Microwave Heating, IEE Power & Engineering Series 4, London, UK, 1988.

4. Link, G., L. Feher, M. Thumm, H.-J. Ritzhaupt-Kleissl, R. Boehme, and A. Weisenburger, "Sintering of advanced ceramics using a 30 GHz, 10-kW, CW industrial gyrotron," IEEE Transactions on Plasma Science, Vol. 27, No. 2, 547-554, 1999.

5. Varadan, V. K., Y. Ma, A. Lakhtakia, and V. V. Varadan, "Modeling of porous ceramics during microwave sintering," Progress In Electromagnetics Research, Vol. 6, 303-313, 1992.

6. Roy, R., D. Agrawal, J. Cheng, and S. Gedevanishvili, "Full sintering of powdered-metal bodies in a microwave field," Nature, Vol. 399, 668-670, Jun. 1999.

7. Ma, J., J. F. Diehl, E. J. Johnson, K. R. Martin, N. M. Miskovsky, C. T. Smith, G. J. Weisel, B. L. Weiss, and D. T. Zimmerman, "Systematic study of microwave absorption, heating and microstructure evolution of porous copper powder metal compacts," J. Appl. Phys., Vol. 101, 074906, 2007.

8. Rybakov, K. I., V. E. Semenov, S. V. Egorov, A. G. Eremmev, I. V. Plotnikov, and Y. V. Bykov, "Microwave heating of conductive powder materials," J. Appl. Phys, Vol. 99, 023506, 200.

9. Anklekar, R. M., K. Bauer, D. Agrawal, and R. Roy, "Improved mechanical properties and microstructural development of microwave sintered copper and nickel steel PM parts," Powder Metallurgy, Vol. 48, 39-46, 2005.

10. Buchelnikov, V. D., D. V. Louzguine-Luzgin, A. P. Anzulevich, I. V. Bychkov, N. Yoshikawa, M. Sato, and A. Inoue, "Modeling of microwave heating of metallic powders," Physica B, Vol. 403, 4053-4058, 2008.

11. Anzulevich, A. P., V. D. Buchelnikov, I. V. Bychkov, and D. V. Louzguine-Luzgin, "Microwave penetrating and heating of metallic powders," PIERS Proceedings, 844-847, Moscow, Russia, Aug. 2009.

12. Garnett, J. C. M., "Colours in metal glasses and metal films," Philosophical Trans. of the Royal Society, Vol. CCIII, 385-42, London, 1904.

13. Goncharenko, A., V. Lozovski, and E. Venger, "Lichteneckers equation: Applicability and limitations," Optics Communications, Vol. 174, No. 1-4, 1932, 2000.

14. Simpkin, R., "Derivation of Litchenker's logarithmic mixture formula from Maxwell's equations," IEEE Trans. on Microw. Theory and Tech., Vol. 58, No. 3, 545-550, Mar. 2010.

15. Bruggeman, D., "Calculation of various physical constants of heterogeneous substances," Ann. Phys., Vol. 32, No. 12, 636-664, 1935.

16. Tinga, W. R., W. A. G. Vos, and D. F. Blossey, "Generalized approach to multiphase dielectric mixture theory," J. of Applied Physics, Vol. 44, No. 9, 3897-3902, 1973.

17. Tao, R. B., Z. Chen, and P. Sheng, "First-principles Fourier approach for the calculation of effective dielectric constant of periodic composites," Physical Review B, Vol. 41, No. 4, 2417-2420, 1990.

18. Kiley, E. M., V. V. Yakovlev, K. Ishizaki, and S. Vaucher, "Applicability study of classical and contemporary models for effective complea permittivity of metal powders," Journal of Microwave Power and Electromagnetic Energy, Vol. 46, No. 1, 26-38, 2012.

19. Parkash, A., J. K. Vaid, and A. Mansingh, "Measurement of dielectric parameters at microwave frequencies by cavity-perturbation technique," IEEE Trans. on Microw. Theory and Tech., Vol. 27, No. 9, 791-795, Sep. 1979.

20. Baker-Jarvis, J., E. Vanzura, and W. Kissick, "Improved technique for determining complex permittivity with the transmission/reflection method," IEEE Trans. on Microw. Theory and Tech., Vol. 38, No. 8, 1096-1103, Aug. 1990.

21. Hasar, U. C., "A new microwave method based on transmission scattering parameter measurements for simultaneous broadband and stable permittivity and permeability determination," Progress In Electromagnetics Research, Vol. 93, 161-176, 2009.

22. Akhtar, M. J., L. E. Feher, and M. Thumm, "A waveguide-based two-step approach for measuring complex permittivity tensor of uniaxial composite materials," IEEE Trans. on Microw. Theory and Tech., Vol. 54, No. 5, May 2006.

23. Smith, D. R., D. C. Vier, T. Koschny, and C. M. Soukoulis, "Electromagnetic parameter retrieval from inhomogeneous metamaterials," Physical Review E, Vol. 71, 036617, 2005.

24. Chen, X., T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials," Physical Review E, Vol. 70, 016608, 2004.

25. Hasar, U. C., J. J. Barroso, C. Sabah, I. Y. Ozbek, Y. Kaya, D. Dal, and T. Aydin, "Retrieval of effective electromagnetic parameters of isotropic metamaterials using reference-plane invariant expressions," Progress In Electromagnetics Research, Vol. 132, 425-441, 2012.

26. Engheta, N. and R. W. Ziolkowski, "Metamaterials: Physics and Engineering Explorations," IEEE Press, 2006.

27. Zimmerman, D. T., J. D. Cardellino, K. T. Cravener, K. R. Feather, N. M. Miskovsky, G. J. Weisel, and , "Microwave absorption in percolating metal-insulator composites," Appl. Phys. Letters, Vol. 93, No. 214103, 1-3, 2008.

28., "Computer Simulation Technology,", CST, Darmstadt, Germany, 1998-2013, [Online] Available: www.cst.com.

29., "Ansys HFSS,", ANSYS, Inc., PA, USA, 2011. [Online]. Available: www.ansys.com.

30. Galek, T., K. Porath, E. Burkel, and U. van Rienen, "Extraction of effective permittivity and permeability of metallic powders in the microwave range," Modelling and Simulations in Materials Science and Engineering, Vol. 18, 025014-1-025014-13, 2010.

31. Takayama, S., G. Link, S. Miksch, M. Sato, J. Ichikawa, and M. Thumm, "Millimetre wave effects on sintering behaviour of metal powder compacts," Powder Metallurgy, Vol. 49, 274-280, 2006.

32. Doyle, W. T., "The Clausius-Mossotti problem for cubic array of spheres," J. Appl. Phys., Vol. 49, No. 2, 795-797, 1978.

33. Pozar, D. M., Microwave Engineering, John Willey & Sons, Inc., New York, 1999.

© Copyright 2010 EMW Publishing. All Rights Reserved