PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 54 > pp. 185-201

A MODIFIED MODEL OF SQUIRREL CAGE INDUCTION MACHINE UNDER GENERAL ROTOR MISALIGNMENT FAULT

By H. Akbari

Full Article PDF (781 KB)

Abstract:
A great deal of researches have so far been conducted on the analysis of eccentricity in induction machines. However, they mostly consider radial non-uniformity and neglect nonuniformity in the axial direction, but in practice, the axial non-uniformity due to rotor misalignment faults is quite common. This paper presents a modified model of a three-phase squirrel cage induction machine under different rotor misalignment conditions. For this purpose, general expressions for air gap and mean radius of induction machine, considering axial non-uniformity, have been developed. The proposed model is able to calculate the time varying inductances versus rotor angle for three-phase squirrel cage induction machines under general rotor misalignment, including static, dynamic and mixed rotor misalignment in the frame of a single program. Simulation results were verified by the experimental ones.

Citation:
H. Akbari, "A Modified Model of Squirrel Cage Induction Machine Under General Rotor Misalignment Fault," Progress In Electromagnetics Research B, Vol. 54, 185-201, 2013.
doi:10.2528/PIERB13071804

References:
1. Toliyat, H. A., T. A. Lipo, and J. C. White, "Analysis of a concentrated winding induction machine for adjustable speed drive applications, part-1 (motor analysis)," IEEE Trans. on Energy Conversion, Vol. 6, 679-692, Dec. 1991.
doi:10.1109/60.103641

2. Toliyat, H. A. and T. A. Lipo, "Transient analysis of cage induction machines under stator, rotor bar and end ring faults," IEEE Trans. on Energy Conversion, Vol. 10, No. 2, 241-247, Jun. 1995.
doi:10.1109/60.391888

3. Milimonfared, J., H. M. Kelk, A. Der Minassians, S. Nandi, and H. A. Toliyat, "A novel approach for broken bar detection in cage induction motors ," IEEE Trans. on Industry Applications, Vol. 35, 1000-1006.

4. Joksomovic, M. G. and J. Penman, "The detection of inter turn short circuits in the stator windings of operating motors," IEEE Trans. on Industry Application, Vol. 47, 1078-1084, Oct. 2000.

5. Al-Nuim, N. A. and H. A. Toliyat, "A novel method for modeling dynamic air-gap eccentricity in synchronous machines based on modified winding function theory ," IEEE Trans. on Energy Conversion, Vol. 13, 156-162, Jun. 1998.
doi:10.1109/60.678979

6. Serrano-Iribarnegaray, L., P. Cruz-Romero, and A. Gomez-Exposito, "Critical review of the modified winding function theory," Progress In Electromagnetics Research, Vol. 133, 515-534, 2013.

7. Nandi, S., S. Ahmed, and H. A. Toliyat, "Detection of rotor slot and other eccentricity related harmonics in a three phase induction motor with different rotor cages," IEEE Trans. on Energy Conversion, Vol. 16, 253-260, 2001.
doi:10.1109/60.937205

8. Nandi, S., R. Bharadwaj, and H. A. Toliyat, "Performance analysis of three phase induction motor under mixed eccentricity condition," IEEE Trans. on Energy Conversion, Vol. 17, 392-399, Sep. 2002.
doi:10.1109/TEC.2002.801995

9. Tabatabaei, I., J. Faiz, H. Lesani, and M. T. Nabavi-Razavi, "Modeling and simulation of a salient pole synchronous generator with dynamic eccentricity using modified winding function approach," IEEE Trans. on Magnetics, Vol. 40, No. 3, 1550-1555, May 2004.
doi:10.1109/TMAG.2004.826611

10. Akbari, H., J. Milimonfared, and H. Meshgin Kelk, "A novel technique for the computation of inductances of salient pole machines under different eccentricity conditions," Electric Power Components and Systems, Vol. 39, No. 14, 1507-1522, 2011.
doi:10.1080/15325008.2011.596752

11. Faiz, J., B. M. Ebrahimi, M. Valavi, and H. A. Toliyat, "Mixed eccentricity fault diagnosis in salient pole synchronous generator using modified winding function method," Progress In Electromagnetics Research B, Vol. 11, 155-172, 2009.
doi:10.2528/PIERB08110903

12. Akbari, H., "An improved analytical model for salient pole synchronous machines under general eccentricity fault," Progress In Electromagnetics Research B, Vol. 49, 389-409, 2013.

13. Faiz, J., I. T. Ardekani, and H. A. Toliyat, "An evaluation of inductances of a squirrel-cage induction motor under mixed eccentric conditions," IEEE Trans. on Energy Conversion, Vol. 18, No. 2, 252-258, Jun. 2003.
doi:10.1109/TEC.2003.811740

14. Meshgin Kelk, H., J. Milimonfared, and H. A. Toliyat, "A Comprehensive method for the calculation of inductance coefficients of cage induction machines," IEEE Trans. on Energy Conversion, Vol. 18, No. 2, 187-193, Jun. 2003.
doi:10.1109/TEC.2003.811734

15. Joksimovic, G. M., M. Durovic, J. Penman, and N. Arthur, "Dynamic simulation of dynamic eccentricity in induction machines-winding function approach," IEEE Trans. on Energy Conversion, Vol. 15, No. 2, 143-148, 2000.
doi:10.1109/60.866991

16. Joksimovic, G., "Dynamic simulation of cage induction machine with air gap eccentricity," IEE Proc. Electr. Power Appl., Vol. 152, No. 4, 803-811, 2005.
doi:10.1049/ip-epa:20041229

17. Faiz, J. and M. Ojaghi, "Unified winding function approach for dynamic simulation of different kinds of eccentricity faults in cage induction machines," IET Electr. Power Appl., Vol. 3, No. 5, 461-470, 2009.
doi:10.1049/iet-epa.2008.0206

18. Ghoggal, A., S. E. Zouzou, M. Sahraoui, H. Derghal, and A. Hadri-Hamida, "A winding function-based model of air-gap eccentricity in saturated induction motors," International Conference on Electrical Machines, 2739-2745, 2012, DOI: 10.1109/ICElMach.2012.6350274.

19. Bossio, G., C. D. Angelo, J. Solsona, G. Garcia, and M. I. Valla, "A 2-D model of the induction machine: An extension of the modified winding function approach," IEEE Trans. on Energy Conversion, Vol. 19, No. 1, 144-150, Mar. 2004.
doi:10.1109/TEC.2003.822294

20. Li, X. D. and S. Nandi, Analysis of a 3-phase induction machine with inclined static eccentricity, IEEE International Conference on Electric Machines and Drives, 1606-1613, 2005, DOI:10.1109/IEMDC.2005.195934.

21. Li, E. and S. Nandi, "Performance analysis of a three phase induction machine with inclined static eccentricity," IEEE Trans. on Industry Application, Vol. 43, No. 2, 531-541, 2007.
doi:10.1109/TIA.2006.889806

22. Kaikaa, M. and M. Hadjami, "Effects of the simultaneous presence of static eccentricity and broken rotor bars on the stator current of induction machine," IEEE Trans. on Industrial Electronics, 2013, DOI:10.1109/TIE.2013.2270216.

23. Akbari, H., H. Meshgin-Kelk, and J. Milimonfared, "Extension of winding function theory for radial and axial non-uniform air gap in salient pole synchronous machines," Progress In Electromagnetics Research, Vol. 114, 407-428, 2011.

24. Nandi, S., "Modeling of induction machines including stator and rotor slot effects," IEEE Trans. on Industry Applications, Vol. 40, No. 4, 1058-1065, 2004.
doi:10.1109/TIA.2004.830764


© Copyright 2010 EMW Publishing. All Rights Reserved