PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 58 > pp. 59-69

OPTIMIZATION OF A DUAL RING ANTENNA BY MEANS OF ARTIFICIAL NEURAL NETWORK

By L. H. Manh, F. Grimaccia, M. Mussetta, and R. E. Zich

Full Article PDF (1,335 KB)

Abstract:
In literature, heuristic algorithms have been successfully applied to a number of electromagnetic problems. The associated cost functions are commonly linked to full-wave analysis, leading to complexity and high computational expense. Artificial Neural Network is one of the most effective biological inspired techniques. In this article, an efficient surrogate model is trained to replace the full-wave analysis in optimizing the bandwidth of microstrip antenna. The numerical comparison between ANN substitution model and full-wave characterization shows significant improvements in time convergence and computational cost. To verify the robustness of this approach, all these concepts are integrated into a case study represented by a rectangular ring antenna with proximity-coupled feed antenna.

Citation:
L. H. Manh, F. Grimaccia, M. Mussetta, and R. E. Zich, "Optimization of a Dual Ring Antenna by Means of Artificial Neural Network," Progress In Electromagnetics Research B, Vol. 58, 59-69, 2014.
doi:10.2528/PIERB13112806

References:
1. Bahl, I. J., S. S. Stuchly, and M. A. Stuchly, "A new microstrip radiator for medical applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 28, No. 12, 1464-1469, Dec. 1980.
doi:10.1109/TMTT.1980.1130268

2. Batchelor, J. C. and R. J. Langley, "Microstrip ring antennas operating at higher order modes for mobile communications," IEE Proceedings Microwaves, Antennas and Propagation, Vol. 142, No. 2, 151-155, Apr. 1995.
doi:10.1049/ip-map:19951826

3. Pirinoli, P., G. Vecchi, and M. Orefice, "Full-wave spectral analysis and design of annular patch antenna with electromagnetically coupled microstrip feed line," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 9, 2415-2423, Sep. 2004.
doi:10.1109/TAP.2004.834019

4. Gandelli, A., F. Grimaccia, M. Mussetta, P. Pirinoli, and R. E. Zich, "Genetical swarm optimization: An evolutionary algorithm for antenna design," Journal of Automatika, Vol. 47, No. 3-4, 105-112, 2006.

5. Selleri, S., M. Mussetta, P. Pirinoli, R. E. Zich, and L. Matekovits, "Some insight over new variations of the particle swarm optimization method," IEEE Antennas and Wireless Propagation Letters, Vol. 5, No. 1, 235-238, Dec. 2006.
doi:10.1109/LAWP.2006.874071

6. Matekovits, L., M. Mussetta, P. Pirinoli, S. Selleri, and R. E. Zich, "Improved PSO algorithms for electromagnetic optimization," Antennas and Propagation Society International Symposium, 33-36, 2005.

7. Zich, R. E., M. Mussetta, F. Grimaccia, A. Gandelli, H. M. Linh, G. Agoletti, M. Bertarini, L. Combi, P. F. Scaramuzzino, and A. Serboli, "Comparison of different optimization techniques in microstrip filter design," 2012 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), 549-552, May 21-24, 2012.

8. Manh, H. L., M. Mussetta, F. Grimaccia, and R. E. Zich, "Differentiated Meta-PSO for rectangular ring antenna with proximity coupled feed," Antennas and Propagation Society International Symposium, 640-641, Orlando, FL, 2013.

9. Robustillo, P., J. A. Encinar, and J. Zapata, "ANN element characterization for reflectarray antenna optimization," Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP), 957-960, Apr. 11-15, 2011.

10. Bermani, E., S. Caorsi, and M. Raffetto, "An inverse scattering approach based on a neural network technique for the detection of dielectric cylinders buried in a lossy half-space," Progress In Electromagnetics Research, Vol. 26, 67-87, 2000.
doi:10.2528/PIER99052001

11. Caputo, D., A. Pirisi, M. Mussetta, A. Freni, P. Pirinoli, and R. E. Zich, "Neural network characterization of microstrip patches for reflectarray optimization," 3rd European Conference on Antennas and Propagation, EuCAP 2009, 2520-2522, Mar. 23-27, 2009.

12. Washington, G., "Aperture antenna shape prediction by feedforward neural networks," IEEE Transactions on Antennas and Propagation, Vol. 45, No. 4, 683-688, Apr. 1997.
doi:10.1109/8.564094

13. Robinson, J. and Y. Rahmat-Samii, "Particle swarm optimization in electromagnetics," IEEE Transactions on Antennas and Propagation, Vol. 52, No. 2, 397-407, Feb. 2004.
doi:10.1109/TAP.2004.823969

14. Selleri, S., M. Mussetta, P. Pirinoli, R. E. Zich, and L. Matekovits, "Differentiated Meta-PSO methods for array optimization," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 67-75, Jan. 2008.
doi:10.1109/TAP.2007.912942

15. Luo, M. and K.-M. Huang, "Prediction of the electromagnetic field in metallic enclosures using artificial neural networks," Progress In Electromagnetics Research, Vol. 116, 171-184, 2011.

16. Zhang, Y. and L. Wu, "Weights optimization of neural network via improved BCO approach," Progress In Electromagnetics Research, Vol. 83, 185-198, 2008.
doi:10.2528/PIER08051403

17. Nesil, S., F. Gunes, and U. Ozkaya, "Phase characterization of a reflectarray unit cell with Minkowski shape radiating element using multilayer perceptron neural network," 2011 7th International Conference on Electrical and Electronics Engineering (ELECO), II-219-II-222, Dec. 1-4, 2011.

18. Thiruvalar Selvan, P. and S. Raghavan, "Neural model for circular-shaped microshield and conductor-backed coplanar waveguide," Progress In Electromagnetics Research M, Vol. 8, 119-129, 2009.
doi:10.2528/PIERM09062903

19. De Vita, P., F. De Vita, A. Di Maria, and A. Freni, "An efficient technique for the analysis of large multilayered printed arrays," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 104-107, 2009.
doi:10.1109/LAWP.2008.2012176

20. Yu, H. and B. M. Wilamowski, "Levenberg-Marquardt training," Industrial Electronics Handbook, Volume 5 --- Intelligent Systems, 2nd edition, Chapter 12, 12-1-12-15, CRC Press, 2011.

21. Cho, S.-W. and J.-H. Lee, "Efficient implementation of the capon beamforming using the Levenberg-Marquardt scheme for two dimensional AOA estimation," Progress In Electromagnetics Research, Vol. 137, 19-34, 2013.
doi:10.2528/PIER12122711


© Copyright 2010 EMW Publishing. All Rights Reserved