PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 58 > pp. 139-149

HUYGENS PRINCIPLE BASED IMAGING OF MULTILAYERED OBJECTS WITH INCLUSIONS

By N. Ghavami, G. Tiberi, D. J. Edwards, A. Safaai-Jazi, and A. Monorchio

Full Article PDF (455 KB)

Abstract:
The application of a recently introduced microwave imaging technique based on the Huygens principle (HP), has been extended to multilayered objects with inclusions in this paper. The methodology of HP permits the capture of contrast such that different material properties within the region of interest can be discriminated in the final image, and its simplicity removes the need to solve inverse problems when forward propagating the waves. Therefore the procedure can identify and localize significant scatterers inside a multilayered volume, without having apriori knowledge on the dielectric properties of the target object. Additionally, an analyticallybased approach for analyzing UltraWide Bandwidth (UWB) body propagation is presented, where the body is modeled as a 3-layer stratified cylinder with an eccentric inclusion. Validation of the technique through both simulations and measurements on multilayered cylindrical objects with inclusions has been performed.

Citation:
N. Ghavami, G. Tiberi, D. J. Edwards, A. Safaai-Jazi, and A. Monorchio, "Huygens Principle Based Imaging of Multilayered Objects with Inclusions," Progress In Electromagnetics Research B, Vol. 58, 139-149, 2014.
doi:10.2528/PIERB13121002

References:
1. Meaney, P. M. and K. D. Paulsen, "Nonactive antenna compensation for fixed-array microwave imaging: Part II Imaging results," IEEE Trans. Med. Imag., Vol. 18, No. 6, 508-518, Jun. 1999.
doi:10.1109/42.781016

2. Winters, D. W., B. D. Van Veen, and S. C. Hagness, "A sparsity regularization approach to the electromagnetic inverse scattering problem," IEEE Transactions on Antennas and Propagation, Vol. 58, No. 1, 145-154, Jan. 2010.
doi:10.1109/TAP.2009.2035997

3. Donelli, M., I. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2011.

4. Kusiak, S. and J. Sylvester, "The scattering support," Comm. Pure Appl. Math., Vol. 56, No. 11, 1525-1548, 2003.
doi:10.1002/cpa.3038

5. Kusiak, S. and J. Sylvester, "The convex scattering support in a background medium," SIAM J. Math. Anal., Vol. 36, No. 4, 1142-1148, 2005.
doi:10.1137/S0036141003433577

6. Chiappe, M. and G. L. Gragnani, "An analytical approach to the reconstruction of the radiating currents in inverse electromagnetic scattering," Microwave and Optical Technology Letters, Vol. 49, No. 2, 354-360, Feb. 2007.
doi:10.1002/mop.22125

7. Gragnani, G. L., "Two-dimensional non-radiating currents for imaging systems: Theoretical development and preliminary assessment," IET Microwaves, Antennas and Propagation, Vol. 3, No. 8, 1164-1171, Dec. 2009.
doi:10.1049/iet-map.2008.0294

8. Li, X. and S. C. Hagness, "A confocal microwave imaging algorithm for breast cancer detection," IEEE Microw. Wireless Compon. Lett., Vol. 11, No. 3, 130-132, Mar. 2001.
doi:10.1109/7260.915627

9. Lazaro, A., D. Girbau, and R. Villarino, "Simulated and experimental investigation of microwave imaging using UWB," Progress In Electromagnetics Research, Vol. 94, 263-280, 2009.
doi:10.2528/PIER09061004

10. Fear, E. C., X. Li, S. C. Hagness, and M. A. Stuchly, "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Eng., Vol. 4, No. 8, 812-822, Aug. 2002.
doi:10.1109/TBME.2002.800759

11. Bond, E. J., X. Li, S. C. Hagness, and B. D. Van Veen, "Microwave imaging via space-time beamforming for early detection of breast cancer," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 8, 1690-1705, Aug. 2003.
doi:10.1109/TAP.2003.815446

12. Li, X., S. K. Davis, S. C. Hagness, D. W. Van der Weide, and B. D. Van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection inmultilayer breast phantoms," IEEE Transactions on Microwave Theory and Techniques, Vol. 52, No. 8, 1856-1865, Aug. 2004.
doi:10.1109/TMTT.2004.832686

13. Klemm, M., I. J. Craddock, J. A. Leendertz, A. Preece, and R. Benjamin, "Radar-based breast cancer detection using a hemispherical antenna array experimental results," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 6, 1692-1704, Jun. 2009.
doi:10.1109/TAP.2009.2019856

14. Ghavami, N., G. Tiberi, D. J. Edwards, and A. Monorchio, "UWB microwave imaging of objects with canonical shape," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 231-239, Jan. 2012.
doi:10.1109/TAP.2011.2167905

15. Tiberi, G., N. Ghavami, D. J. Edwards, and A. Monorchio, "Ultrawideband microwave imaging of cylindrical objects with inclusions," IET Microwaves, Antennas & Propagation, Vol. 5, No. 12, 1440-1446, Sep. 16, 2011.
doi:10.1049/iet-map.2011.0033

16. Tiberi, G., N. Ghavami, D. J. Edwards, and A. Monorchio, "Novel techniques for UWB microwave imaging of objects with canonical shape," PIERS Proceedings, 808-812, Marrakesh, Morocco, Mar. 20-23, 2011.

17. Stratigaki, L. G., M. P. Ioannidou, and D. P. Chrissoulidis, "Scattering from a dielectric cylinder with multiple eccentric cylindrical dielectric inclusions," IEE Proceedings --- Part H: Microwaves Antennas and Propagation, Vol. 143, No. 6, 505-511, Dec. 1996.
doi:10.1049/ip-map:19960854

18. Ioannidou, M. P., K. D. Kapsalas, and D. P. Chrissoulidis, "Electromagnetic-wave scattering from an eccentrically stratified, dielectric cylinder with multiple, eccentrically stratified, cylindrical, dielectric inclusions," Journal of Electromagnetic Waves and Applications, Vol. 18, No. 4, 495-516, 2004.
doi:10.1163/156939304774113098

19. Jarem, J. M., "Rigorous coupled wave analysis of bipolar cylindrical systems: Scattering from inhomogeneous dielectric material, eccentric, composite circular cylinders," Progress In Electromagnetics Research, Vol. 43, 181-237, 2003.
doi:10.2528/PIER03042304

20. Stratton, J. A., Electromagnetic Theory, McGraw-Hill Book Company, 1941.

21. Li, X., S. K. Davis, S. C. Hagness, D. W. Van der Weide, and B. D. Van Veen, "Microwave imaging via space-time beamforming: Experimental investigation of tumor detection in multilayer breast phantoms," IEEE Trans. Microwave Theory Tech., Vol. 52, No. 8, 1856-1865, Aug. 2004.
doi:10.1109/TMTT.2004.832686

22. Gabriel, C., S. Gabriely, and E. Corthout, "The dielectric properties of various tissues," Phys. Med. Biol., Vol. 41, 2231-2249, 1996.
doi:10.1088/0031-9155/41/11/001

23. Chen, Y., E. Gunawan, K. S. Low, S. Wang, Y. Kim, and C. B. Soh, "Pulse design for time reversal method as applied to ultrawideband microwave breast cancer detection: A two-dimensional analysis," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 1, 194-204, 2007.
doi:10.1109/TAP.2006.888432

24. Iizuka, K., "An agar-agar chamber for study of electromagnetic waves in an inhomogeneous medium," IEEE Transactions on Antennas and Propagation, Vol. 19, No. 3, 365-377, 1971.
doi:10.1109/TAP.1971.1139929


© Copyright 2010 EMW Publishing. All Rights Reserved