Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 72 > pp. 67-93


By R. M. Narayanan, S. A. Wilson, and M. Rangaswamy

Full Article PDF (8,151 KB)

Radar holography has been established as an effective image reconstruction process by which the measured diffraction pattern across an aperture provides information about a threedimensional target scene of interest. In general, the sampling and reconstruction of radar holographic images are computationally expensive. Imaging can be made more efficient with the use of sparse sampling techniques and appropriate interpolation algorithms. Through extensive simulation and experimentation, we show that simple interpolation of sparsely-sampled target scenes provides a quick and reliable approach to reconstruct sparse datasets for accurate image reconstruction leading to reliable concealed target detection and recognition. For scanning radar applications, data collection time can be drastically reduced through application of sparse sampling. This reduced scan time will typically benefit a real-time system by allowing improvements in processing speed and timeliness of decision-making algorithms. An added advantage is the reduction of required data storage. Experimental holographic data are sparsely sampled over a two-dimensional aperture and reconstructed using numerical interpolation techniques. Extensive experimental evaluation of this new technique of interpolation-based sparse sampling strategies suggests that reduced sampling rates do not degrade the objective quality of holograms of concealed objects.

R. M. Narayanan, S. A. Wilson, and M. Rangaswamy, "Sparsely Sampled Wideband Radar Holographic Imaging for Detection of Concealed Objects," Progress In Electromagnetics Research B, Vol. 72, 67-93, 2017.

1. Sheen, D. M., D. L. McMakin, and T. E. Hall, "Three-dimensional millimeter-wave imaging for concealed weapon detection," IEEE Trans. Microwave Theory Tech., Vol. 49, No. 9, 1581-1592, Sep. 2001.

2. Goodman, J. W., Introduction to Fourier Optics, McGraw-Hill, New York, NY, 1968.

3. Brady, D. J., K. Choi, D. L. Marks, R. Horisaki, and S. Lim, "Compressive holography," Opt. Express, Vol. 17, No. 15, 13040-13049, Jul. 20, 2009.

4. Candes, E. and J. Romberg, "Sparsity and incoherence in compressive sampling," Inverse Prob., Vol. 23, No. 3, 969-985, Jun. 2007.

5. Rivenson, Y. and A. Stern, "Compressive sensing techniques in holography," Proc. 10th Euro- Am. Workshop Inf. Opt. (WIO), Benicassim, Spain, Jun. 2011, doi: 10.1109/WIO.2011.5981451.

6. Hald, J., "Wideband acoustical holography," Proc. 43rd Int. Congress Noise Control Eng., 44-56, Melbourne, Australia, Nov. 2014.

7. Qiao, L., Y. Wang, Z. Shen, Z. Zhao, and Z. Chen, "Compressive sensing for direct millimeter-wave holographic imaging," Appl. Opt., Vol. 54, No. 11, 3280-3289, Apr. 10, 2015.

8. Cull, C. F., D. A. Wikner, J. N. Mait, M. Mattheiss, and D. J. Brady, "Millimeter-wave compressive holography," Appl. Opt., Vol. 49, No. 19, E67-E82, Jul. 1, 2010.

9. Martinez-Lorenzo, J. A., F. Quivira, and C. M. Rappaport, "SAR imaging of suicide bombers wearing concealed explosive threats," Progress In Electromagnetics Research, Vol. 125, 255-272, 2012.

10. Demirci, S., H. Cetinkaya, E. Yigit, C. Ozdemir, and A. Vertiy, "A study on millimeter- wave imaging of concealed objects: application using back-projection algorithm," Progress In Electromagnetics Research, Vol. 128, 457-477, 2012.

11. Harmer, S. W., N. J. Bowring, N. D. Rezgui, and D. Andrews, "A comparison of ultra wide band conventional and direct detection radar for concealed human carried explosives detection," Progress In Electromagnetics Research Letters, Vol. 39, 37-47, 2013.

12. Yurduseven, O., "Indirect microwave holographic imaging of concealed ordnance for airport security imaging systems," Progress In Electromagnetics Research, Vol. 146, 7-13, 2014.

13. Wilson, S. A. and R. M. Narayanan, "Compressive wideband microwave radar holography," Proc. SPIE Conf. Radar Sensor Technol. XVIII, 907707-1-907707-8, Baltimore, MD, May 2014.

14. Wilson, S. A., R. M. Narayanan, and M. Rangaswamy, "Wideband imaging of concealed objects using compressive radar holography," Proc. IEEE Int. Radar Conf., 925-930, Arlington, VA, May 2015.

15. Gabor, D., "A new microscopic principle," Nat., Vol. 161, No. 4098, 777-778, May 15, 1948.

16. Soumekh, M., "Bistatic synthetic aperture radar inversion with application in dynamic object imaging," IEEE Trans. Signal Process., Vol. 39, No. 9, 2044-2055, Sep. 1991.

17. Ida, Y., K. Hayashi, and K. Ami, "The effect of reference's phase on radio-frequency holographic imaging," IEEE Trans. Antennas Propag., Vol. 30, No. 6, 1216-1221, Nov. 1982.

18. Ivashov, S., V. Razevig, A. Sheyko, I. Vasilyev, A. Zhuravlev, and T. Bechtel, "Holographic subsurface radar technique and its applications," Proc. 12th Int. Conf. Ground Penetrating Radar, 1-11, Birmingham, UK, Jun. 2008.

19. Collins, H. D., D. M. Sheen, T. E. Hall, and R. P. Gribble, "UWB radar holography applied to RCS signature reduction of military vehicles," Rev. Prog. Quant. Nondestr. Eval., Vol. 16, 703-707, 1997.

20. Zhuravlev, A., S. Ivashov, V. Razevig, I. Vasiliev, and T. Bechtel, "Shallow depth subsurface imaging with microwave holography," Proc. SPIE Conf. Detect. Sens. Mines, Explos. Objects, and Obscured Targets XIX, 90720X-1-90720X-9, Baltimore, MD, May 2014.

21. Hunt, J., J. Gollub, T. Driscoll, G. Lipworth, A. Mrozack, M. S. Reynolds, D. J. Brady, and D. R. Smith, "Metamaterial microwave holographic imaging system," J. Opt. Soc. Am. A, Vol. 31, No. 10, 2109-2119, Oct. 2014.

22. Thevenaz, P., T. Blu, and M. Unser, "Image interpolation and resampling," Handbook of Medical Image Processing and Analysis, 2nd Edition, 465-493, edited by I. N. Bankman, Academic Press, Burlington, MA, 2009.

23. Lehmann, T. M., C. Gonner, and K. Spitzer, "Survey: interpolation methods in medical image processing," IEEE Trans. Med. Imaging, Vol. 18, No. 11, 1049-1075, Nov. 1999.

24. Thevenaz, P., T. Blu, and M. Unser, "Interpolation revisited," IEEE Trans. Med. Imaging, Vol. 19, No. 7, 739-758, Jul. 2000.

25. Keys, R., "Cubic convolution interpolation for digital image processing," IEEE Trans. Acoust. Speech Signal Process., Vol. 29, No. 6, 1153-1160, Dec. 1981.

26. Herman, G. T., S. W. Rowland, and M.-M. Yau, "A comparative study of the use of linear and modi¯ed cubic spline interpolation for image reconstruction," IEEE Trans. Nucl. Sci., Vol. 26, No. 2, 2879-2984, Apr. 1979.

27. Hou, H. S. and H. Andrews, "Cubic splines for image interpolation and digital filtering," IEEE Trans. Acoust. Speech Signal Process., Vol. 26, No. 6, 508-517, Dec. 1978.

28. Parker, J. A., R. V. Kenyon, and D. E. Troxel, "Comparison of interpolating methods for image resampling," IEEE Trans. Med. Imaging, Vol. 2, No. 1, 31-39, Mar. 1983.

29. Donoho, D. L. and J. Tanner, "Precise undersampling theorems," Proc. IEEE, Vol. 98, No. 6, 913-924, Jun. 2010.

30. Donoho, D. L., "Compressed sensing," IEEE Trans. Inf. Theory, Vol. 52, No. 4, 1289-1306, Apr. 2006.

31. Candes, E. J. and M. B. Wakin, "An introduction to compressive sampling," IEEE Signal Process. Mag., Vol. 25, No. 2, 21-30, Mar. 2008.

32. Rivenson, Y. and A. Stern, "Compressive holography," Optical Compressive Imaging, 155-176, edited by A. Stern, CRC Press, Boca Raton, FL, 2017.

33. Keep, D. N., "Frequency-modulation radar for use in the mercantile marine," Proc. IEE --- Part B: Radio Electron. Eng., Vol. 103, No. 10, 519-523, Jul. 1956.

34. Jahne, B., Digital Image Processing: Concepts, Algorithms, and Scientific Applications, 3rd Ed., Springer-Verlag, London, UK, 2002.

35. Du, K., H. Han, and G. Wang, "A new algorithm for removing compression artifacts of wavelet- based image," Proc. 2011 IEEE Int. Conf. Comput. Sci. Autom. Eng. (CSAE), 336-340, Shanghai, China, Jun. 2011.

36. Akey, M. L. and O. R. Mitchell, "Detection and sub-pixel location of objects in digitized aerial imagery," Proc. 7th Int. Conf. Pattern Recognit., 411-414, Montreal, Canada, Jul.-Aug. 1984.

37. Daniels, D. J., D. J. Gunton, and H. F. Scott, "Introduction to subsurface radar," IEE Proc. Part F: Radar Signal Process., Vol. 135, No. 4, 278-320, Aug. 1988.

38. Moura, J. M. F. and Y. Jin, "Detection by time reversal: Single antenna," IEEE Trans. Signal Process., Vol. 55, No. 1, 187-201, Jan. 2007.

© Copyright 2010 EMW Publishing. All Rights Reserved