PIER B
 
Progress In Electromagnetics Research B
ISSN: 1937-6472
Home | Search | Notification | Authors | Submission | PIERS Home | EM Academy
Home > Vol. 87 > pp. 61-91

AN OVERVIEW OF MICROWAVE IMAGING FOR BREAST TUMOR DETECTION

By R. Benny, T. A. Anjit, and P. Mythili

Full Article PDF (509 KB)

Abstract:
Microwave imaging (MWI) is a non-ionizing, non-invasive and an upcoming affordable medical imaging modality. Over the last few decades, MWI has invited active research towards bio-medical imaging, with special focus on breast tumor detection. After long years of intense research and clinical trials, a breast tumour monitoring unit based on MWI is finally entering clinical imaging scenarios. In this manuscript, the vast literature in MWI to date has been consolidated, and an in-detail study of the state-of-the-art for breast tumor detection has been presented. The hurdles faced during clinical trials are discussed, and their possible solutions and future directions for a fast transition into clinical imaging have been presented. It is hoped that this paper can serve as a guide for MWI researchers and practitioners, especially those new to the field to comprehend the potential of MWI as a viable imaging tool for breast imaging.

Citation:
R. Benny, T. A. Anjit, and P. Mythili, "An Overview of Microwave Imaging for Breast Tumor Detection," Progress In Electromagnetics Research B, Vol. 87, 61-91, 2020.
doi:10.2528/PIERB20012402
http://www.jpier.org/pierb/pier.php?paper=20012402

References:
1. Jamali, N. H., K. A. Hong Ping, S. Sahrani, and T. Takenaka, "Image reconstruction based on combination of inverse scattering technique and total variation regularization method," Indonesian J. Electrical Engineering and Computer Science, Vol. 5, 569-576, 2017.
doi:10.11591/ijeecs.v5.i3.pp569-576

2. Kwon, S. and S. Lee, "Recent advances in microwave imaging for breast cancer detection," Int. J. Biomed. Imaging, Vol. 206, 1-26, 2016.
doi:10.1155/2016/5054912

3. American Cancer Society, Cancer Facts & Figures 2019, , https://www.cancer.org/cancer/breastcancer/about/how common-is-breast cancer.html, accessed Mar. 2019.

4. Fear, E. C., "Confocal microwave imaging for breast cancer detection: Localization of tumors in three dimensions," IEEE Trans. Biomed. Engineering, Vol. 49, 812-822, 2002.
doi:10.1109/TBME.2002.800759

5. Guo, R., G. Lu, and B. Fei, "Ultrasound imaging technologies for breast cancer detection and management — A review," Ultrasound Med. Biol., Vol. 44, 37-70, 2018.
doi:10.1016/j.ultrasmedbio.2017.09.012

6. Bowles, D., et al., "The use of ultrasound in breast cancer screening of asymptomatic women with dense breast tissue: A narrative review," Journal of Medical Imaging and Radiation Sciences, Vol. 47, 21-28, 2016.
doi:10.1016/j.jmir.2016.06.005

7. Vitual Medical Centre, PET Scan (Positron Emission Tomography), , https://www.myvmc.com/investigations/pet-scan-positron-emission-tomography.html, accessed Nov. 2019.

8. Schueren, M. V., Safety assessment of microwave radar breast imaging in the 0.434–9 GHz range, Master Thesis, Department of Electrical & Computer Engineering, McGill University Montreal, Quebec, Canada, Jun. 2011.

9. Rezaeieh, S. A., Wideband microwave imaging systems for the diagnosis of fluid accumulation in the human torso, Ph.D. Thesis, University of Queensland, Australia, 2016.

10. Cleveland, R. F. and J. L. Ulcek, "Questions and answers about biological effects and potential hazards of radiofrequency electromagnetic fields," OET Bull., Vol. 56, 1-36, 1999.

11. ICNIRP Guidelines, Guidelines for limiting exposure to time-varying electric, 6 magnetic and electromagnetic fields, 2018.

12. Larsen, L. E. and J. H. Jacobi, Medical Application of Microwave Imaging, 229, IEEE Press, New York, 1986.

13. Grzegorczyk, T. M., P. M. Meaney, P. A. Kaufman, R. M. Di Florio-Alexander, and K. D. Paulsen, "Fast 3-D tomographic microwave imaging for breast cancer detection," IEEE Trans. Medical Imaging, Vol. 31, 1584-1592, 2012.
doi:10.1109/TMI.2012.2197218

14. Elahi, M. A., B. R. Lavoie, E. Porter, M. Glavin, E. Jones, and E. C. Fear, "Comparison of radar-based microwave imaging algorithms applied to experimental breast phantoms," Proc. URSI General Assembly and Scientific Symposium (GASS), Montreal, Canada, Aug. 2017.

15. Semenov, S. Y. and D. R. Corfield, "Microwave tomography for brain imaging: Feasibility assessment for stroke detection," Int. J. Antennas Propag., 1-8, 2008.
doi:10.1155/2008/254830

16. Scapaticci, R., L. Di Donato, I. Catapano, and L. A. Crocco, "Feasibility study on microwave imaging for brain stroke monitoring," Progress In Electromagnetics Research B, Vol. 40, 305-324, 2012.
doi:10.2528/PIERB12022006

17. Dogu, S., I. Dilman, M. C. Joren, and I. Akduman, "Imaging of pulmonary edema with microwaves-preliminary investigation," Proc. International Conference on Electrical and Electronics Engineering (ELECO), Bursa, Turkey, 2017.

18. Ghavami, N., G. Tiberi, M. Ghavami, and M. Lane, "Huygens principle based UWB microwave imaging method for skin cancer detection," Proc. International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP), Prague, Czech Republic, 2016.

19. Mobashsher, A. T. and A. Abbosh, "Microwave imaging system to provide portable-low powered medical facility for the detection of intracranial hemorrhage," Proc. Australian Microwave Symposium (AMS), Melbourne, Australia, 2014.

20. Meaney, P. M., D. Goodwin, A. H. Golnabi, and K. D. Paulsen, "Clinical microwave tomographic imaging of the calcaneus: A first-in-human case study of two subjects," IEEE Trans. Biomed. Engineering, Vol. 59, 3304-3313, 2012.
doi:10.1109/TBME.2012.2209202

21. Muqatash, S. A., M. Khamechi, and A. Sabouni, "Detection of the cervical spondylotic myelopathy using noninvasive microwave imaging technique," IEEE Int. Symp. Ant. Propag. and USNC/URSI National Radio Science Meeting, San Diego, USA, 2017.

22. Colton, D. and P. Monk, "The detection and monitoring of leukemia using electromagnetic waves: Numerical analysis," Inverse Problems — IOPScience, Vol. 11, 329-341, 1995.
doi:10.1088/0266-5611/11/2/003

23. Lin, J. C. and M. J. Clarke, "Microwave imaging of cerebral edema," Proc. IEEE, Vol. 70, 523-524, 1982.
doi:10.1109/PROC.1982.12341

24. Zamani, A., S. A. Rezaeieh, and A. M. Abbosh, "Lung cancer detection using frequency domain microwave imaging," Electronics Lett., Vol. 51, 740-741, 2015.
doi:10.1049/el.2015.0230

25. Brovoll, S., et al., "Time-lapse imaging of human heartbeats using UWB radar," Proc. Biomedical Circuits and Systems (BIOCAS), Rotterdam, Netherlands, 2013.

26. Salvador, S. M., S. M. Fear, E. C. Okoniewski, M. Matyas, and R. John, "Exploring joint tissues with microwave imaging," IEEE Trans. on Microwave Theory and Tech., Vol. 58, 2307-2313, 2010.
doi:10.1109/TMTT.2010.2052662

27. Alirotehand, M. S. and A. Arbabian, "Microwave-induced thermo-acoustic imaging of subcutaneous vasculature with near-field RF excitation," IEEE Trans. on Microwave Theory and Tech., Vol. 66, 577-588, 2018.
doi:10.1109/TMTT.2017.2714664

28. Bolomey, J. C., "Crossed viewpoints on microwave-based imaging for medical diagnosis: From genesis to earliest clinical outcomes," The World of Applied Electromag., 369-414, Springer International Publishing, Switzerland, 2018.

29. Modiri, A., S. Goudreau, and K. Kiasaleh, "Review of breast screening: Toward clinical realization of microwave imaging," Med. Phys., Vol. 44, 446-458, Dec. 2017.
doi:10.1002/mp.12611

30. O’Loughlin, D., M. O’Halloran, B. M. Moloney, M. Glavin, and E. Jones, "Microwave breast imaging: Clinical advances and remaining challenges," IEEE Trans. Biomed. Engineering, Vol. 65, 1-14, 2018.
doi:10.1109/TBME.2017.2779245

31. Micrima-Maria Update, Micrima enters into distribution agreement with Hologic for its novel breast imaging system MARIA June 2019, https://micrima.com/micrima-newsletters/vol6, accessed Jan. 2020.

32. Farugia, L., P. S. Wismayer, L. Z. Mangion, and C. V. Sammut, "Accurate in vivo dielectric properties of liver from 500 MHz to 40 GHz and their correlation to ex vivo measurements," Electromagnetic Biology and Medicine, 1-9, 2016.

33. Salahuddin, S., A. L. Gioia, M. A. Elahi, E. Porter, M. O’Halloran, and A. Shahzad, "Comparison of in-vivo and ex-vivo dielectric properties of biological tissues," Proc. ICEAA, 582-585, Verona, Italy, 2017.

34. Amin, B., M. A. Elahi, A. Shahzad, E. Porter, B. McDermott, and M. O’Halloran, "Dielectric properties of bones for the monitoring of osteoporosis," Medical & Biological Engineering & Computing, Vol. 57, 1-13, 2019.
doi:10.1007/s11517-018-1887-z

35. Ridley, N., A. Iriarte, and L. Tsui, "Automatic labeling of lesions using radio frequency feature discrimination," Proc. European Congress of Radiology Annual Meeting, Vienna, Austria, 2017.

36. Chaudhary, S. S., R. K. Mishra, A. Swarupand, and J. M. Thomas, "Dielectric properties of normal and malignant human breast tissues at radiowave and microwave frequencies," Indian Journal of Biochemistry and Biophysics, Vol. 21, 76-79, 1984.

37. Joines, W. T., Y. Zhang, and R. L. Jirtle, "The measured electrical properties of normal and malignant human tissues from 50 to 900 MHz," Med. Phys., Vol. 21, 547-550, 1994.
doi:10.1118/1.597312

38. Campbel, A. M. and D. V. Land, "Dielectric properties of female human breast tissue measured in vitro at 3.2 GHz," Phys. Med. Biol., Vol. 3, 193-210, 1992.
doi:10.1088/0031-9155/37/1/014

39. Hurt, W. D., J. M. Ziriax, and P. A. Mason, "Variability in EMF permittivity values: Implications for SAR calculations," IEEE Trans. Biomed. Engineering, Vol. 47, 396-401, 2000.
doi:10.1109/10.827308

40. Lazebnik, M., L. McCartney, and D. Popovic, "A large-scale study of the ultrawideband microwave dielectric properties of normal breast tissue obtained from reduction surgeries," Physics in Medicine and Biology, Vol. 52, 26-37, 2007.

41. Lazebnik, M., et al., "A large-scale study of the ultrawideband microwave dielectric properties of normal, benign and malignant breast tissues obtained from cancer surgeries," Physics in Medicine and Biology, Vol. 52, No. 20, 6093-6115, 2007.
doi:10.1088/0031-9155/52/20/002

42. Poplack, S. P., et al., "Electromagnetic breast imaging: Results of a pilot study in women with abnormal mammograms," Radiology, Vol. 243, 350-359, 2007.
doi:10.1148/radiol.2432060286

43. Halter, R. J., et al., "The correlation of in vivo and ex vivo tissue dielectric properties to validate electromagnetic breast imaging: Initial clinical experience," Institute of Physics and Engineering in Medicine, Vol. 30, 121-136, 2009.

44. Chung, S. H., A. E. Cerussi, and A. Klifa, "In vivo water state measurements in breast cancer using broadband diffuse optical spectroscopy," Phys. Med. Biol., Vol. 53, 6713-6727, 2008.
doi:10.1088/0031-9155/53/23/005

45. Shahzad, A., S. Khan, and M. Jones, "Investigation of the effect of dehydration on tissue dielectric properties in ex vivo measurements," Biomedical Physics and Engineering Express, Vol. 3, 1-9, 2017.

46. Meaney, P. M., A. P. Gregory, and N. R. Epstein, "Microwave open-ended coaxial dielectric probe: Interpretation of the sensing volume re-visited," BMC Medical Physics, Vol. 14, 1-11, 2014.

47. Meaney, P., T. Rydholm, and H. A. Brisby, "A transmission-based dielectric property probe for clinical applications," Sensors, Vol. 6, 1-16, 2018.

48. Gioia, A. L., S. Salahuddin, M. O’Halloran, and E. Porter, "Quantification of the sensing radius of a coaxial probe for accurate interpretation of heterogeneous tissue dielectric data," IEEE J. Electromag. RF Microw. Medicine & Biol., Vol. 2, 1-9, 2018.

49. Porter, et al., "Minimum information for dielectric measurements of biological tissues (MINDER): A framework for repeatable and reusable data," Int. J. RF Microw. Comput. Aided Eng., Vol. 28, 1-27, 2017.

50. Zubair, K. S., S. A. Alhuwaidi, H. H. Song, Y. G. Shellman, W. A. Robinson, A. J. Applegate, and C. M. Amato, "Investigation of dielectric spectroscopy response in normal and cancerous biological tissues using S-parameter measurements," Journal of Electromagnetic Waves and Applications, Vol. 32, No. 8, 956-971, 2018.

51. Hussein, M., F. Awwad, D. Jithin, E. Hasasna, K. Athamneh, and R. Iratni, "Breast cancer cells exhibits specific dielectric signature in vitro using the open-ended coaxial probe technique from 200 MHz to 13.6 GHz," Scientific Reports, Vol. 9, 1-8, 2019.

52. Gioia, L. A, et al., "Open-ended coaxial probe technique for dielectric measurement of biological tissues: Challenges and common practices," Diagnostics, Vol. 8, 1-38, 2018.

53. Slaney, M., A. C. Kak, and L. E. Larsen, "Limitations of imaging with first order diffraction tomography," IEEE Trans. on Microwave Theory and Tech., Vol. 32, 860-874, 1984.

54. Semenov, S. Y., A. E. Boulyshev, and R. H. Svenson, "Three-dimensional microwave tomography experimental prototype of the system and vector Born reconstruction method," IEEE Trans. Biomed. Engineering, Vol. 46, 937-947, 1999.

55. Joisel, A., A. Broquetas, J. M. Griffin, L. Jofre, and J. C. Bolomey, "Microwave imaging techniques for biomedical application," Proc. IEEE Instrum. Measure. Tech. Conference, Venice, Italy, 1999.

56. Meaney, P. M., M. W. Fanning, and K. D. Paulsen, "A clinical prototype for active microwave imaging of the breast," IEEE Trans. on Microwave Theory and Tech., Vol. 48, 1841-1853, 2000.

57. Son, S. H., N. Simonov, H. J. Kim, J. M. Lee, and S. I. Jeon, "Preclinical prototype development of a microwave tomography system for breast cancer detection," ETRI Journal, Vol. 32, No. 6, 901-910, 2010.

58. Zhurbenko, V., T. Rubaek, V. Krozer, and P. Meincke, "Design and realisation of a microwave three-dimensional imaging system with application to breast-cancer detection," IET Microwaves, Antennas Propag., Vol. 4, 2200-2211, 2010.

59. Gibbins, D., D. Byrne, T. Henriksson, B. Monsalve, and I. J. Craddock, "Less becomes more for microwave imaging — Design and validation of an ultrawide-band measurement array," IEEE Antennas Propag. Mag., Vol. 59, 72-85, 2017.

60. Fedeli, A., et al., "A tomograph prototype for quantitative microwave imaging: Preliminary experimental results," J. Imaging, Vol. 4, 1-9, 2018.

61. Zamani, A., S. A. Rezaeieh, K. S. Bialkowski, and A. M. Abbosh, "Boundary estimation of imaged object in microwave medical imaging using antenna resonant frequency shift," IEEE Trans. Antennas and Propag., Vol. 66, 927-936, 2018.

62. Rezaeieh, S. A., A. Zamani, K. S. Bialkowski, G. M. Macdonald, and A. M. Abbosh, "Three-dimensional electromagnetic torso scanner," Sensors, Vol. 19, 1-14, 2019.

63. Asefi, M., A. Baran, and J. LoVetri, "An experimental phantom study for air-based quasi-resonant microwave breast imaging," IEEE Trans. on Microwave Theory and Tech., Vol. 67, 3946-3954, 2019.

64. Joachimowitz, N., C. Pichot, and J. P. Hugonin, "Inverse scattering in iterative numerical method for electromagnetic imaging," IEEE Trans. Antennas and Propag., Vol. 39, 1742-1752, 1991.

65. Chew, W. C. and Y. M. Wang, "Reconstruction of two-dimensional permittivity distribution using distorted Born iterative method," IEEE Trans. Medical Imaging, Vol. 9, 218-225, 1990.

66. Kishk, A. A., R. P. Parrikar, and A. Z. Elsherbeni, "Electromagnetic scattering from an eccentric multilayered circular cylinder," IEEE Trans. Antennas and Propag., Vol. 40, 295-303, 1992.

67. Oliveri, G., N. Anselmi, and A. Massa, "Compressive sensing imaging of non-sparse 2D scatterers by a total-variation approach within the Born approximation," IEEE Trans. Antennas and Propag., Vol. 62, 5157-5170, 2014.

68. Ireland, D., K. Bialkowski, and A. M. Abbosh, "Microwave imaging for brain stroke detection using Born iterative method," IET Microw. Antennas Propag., Vol. 7, 909-915, 2013.

69. Burfeindt, M. J., J. D. Shea, and S. C. Hagness, "Beamforming-enhanced inverse scattering for microwave breast imaging," IEEE Trans. Antennas and Propag., Vol. 62, 5126-5132, 2014.

70. Ye, X. and X. Chen, "Subspace-based distorted-Born iterative method for solving inverse scattering problems," IEEE Trans. Antennas and Propag., Vol. 65, 7224-7232, 2017.

71. Neira, L. M., B. D. Van Veen, and S. C. Hagness, "High-resolution microwave breast imaging using a 3-D inverse scattering algorithm with a variable-strength spatial prior constraint," IEEE Trans. Antennas and Propag., Vol. 65, 6002-6014, 2017.

72. Palmeri, R., M. T. Bevacqua, L. Crocco, T. Isernia, and L. Di Donato, "Microwave imaging via distorted iterated virtual experiments," IEEE Trans. Antennas and Propag., Vol. 65, 1-9, 2016.

73. Meaney, P. M., S. D. Geimer, and K. D. Paulsen, "Two-step inversion with a logarithmic transformation for microwave breastimaging," J. Medical Physics, Vol. 44, 4239-4251, 2017.

74. Tournier, P. H., et al., "Microwave tomography for brain stroke imaging," Proc. IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, San Diego, USA, 2017.

75. Bisio, I., et al., "Brain stroke microwave imaging by means of a Newton-conjugate-gradient method in Lp Banach spaces," IEEE Trans. on Microwave Theory and Tech., Vol. 66, 3668-3682, 2018.

76. Autieri, R., G. Ferraiuolo, and V. Pascazio, "Bayesian regularization in nonlinear imaging: Reconstructions from experimental data in non-linearized microwave tomography," IEEE Trans. Geosci. Remote Sens., Vol. 49, 801-813, 2011.

77. Rocca, P., M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, "Evolutionary optimization as applied to inverse problems," Inverse Prob., Vol. 25, 1-41, 2009.

78. Robinson, J. and Y. R. Samii, "Particle swarm optimization in electromagnetics," IEEE Trans. Antennas and Propag., Vol. 52, 397-407, 2004.

79. Donelli, M., I. Craddock, D. Gibbins, and M. Sarafianou, "A three-dimensional time domain microwave imaging method for breast cancer detection based on an evolutionary algorithm," Progress In Electromagnetics Research M, Vol. 18, 179-195, 2011.

80. Salucci, M., L. Poli, N. Anselmi, and A. Massa, "Multifrequency particle swarm optimization for enhanced multiresolution GPR microwave imaging," IEEE Trans. Geosci. Remote Sens., Vol. 55, 1305-1317, 2017.

81. Poli, L., G. Oliveri, and A. Massa, "Microwave imaging within the first-order Born approximation by means of contrast-field Bayesian compressive sensing," IEEE Trans. Antennas and Propag., Vol. 60, 2865-2879, 2012.

82. Poli, L., G. Oliveri, P. Rocca, and A. Massa, "Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations," IEEE Trans. Geosci. Remote Sens., Vol. 51, 2920-2935, 2013.

83. Majobi, P. and J. LeVetri, "Comparison of TE and TM inversions in the framework of the Gauss-Newton method," IEEE Trans. Antennas and Propag., Vol. 64, 1336-1348, 2010.

84. Shah, P. and U. K. Khankohoje, "Inverse scattering using a joint L1-L2 norm-based regularization," IEEE Trans. Antennas and Propag., Vol. 64, 1373-1384, 2017.

85. Oliveri, G., M. Salucci, N. Anselmi, and A. Massa, "Compressive sensing as applied to inverse problems for imaging: Theory, applications, current trends, and open challenges," IEEE Antennas Propag. Magazine, Vol. 17, 34-46, 2017.

86. Candes, E. and J. Romberg, l1-magic: Recovery of sparse signals via convex programming 2005, http: www.acm.caltech.edu/l1magic/l1magicnotes.pdf., accessed Jan. 2019.

87. Yalcin, E. and O. Ozdemir, "Sparsity based regularization for microwave imaging with NESTA algorithm," Proc. IEEE Conference on Antennas Measurements and Applications (CAMA), Tsukuba, Japan, 2017.

88. Ambrosanio, M., P. Kosmas, and V. Pascazio, "A multithreshold iterative DBIM-based algorithm for the imaging of heterogeneous breast tissues," IEEE Trans. Biomed. Engineering, Vol. 66, 509-520, 2019.

89. Ambrosanio, M., M. Bevacqua, T. Isernia, and V. Pascazio, "The tomographic approach to ground-penetrating radar for underground exploration and monitoring," IEEE Signal Processing Magazine, Vol. 36, No. 4, 62-73, 2019.

90. Kosmas, P., et al., "Design and experimental validation of a multiple-frequency microwave tomography system employing the DBIM-TwIST algorithm," Sensors, Vol. 18, 1-13, 2018.

91. Kosmas, P., et al., "Experimental validation of microwave tomography with the DBIM-TwIST algorithm for brain stroke detection and classification," Sensors, Vol. 20, 1-16, 2020.

92. Zhou, H. and R. M. Narayan, "Microwave imaging of nonsparse object using dual-mesh method and iterative method," IEEE Trans. Antennas and Propag., Vol. 67, 504-512, 2019.

93. Rudin, L. I. and S. Osher, "Total variation based image restoration with free local constraints," Proc. International Conf. Image Processing, Austin, USA, 1994.

94. Anselmi, N., G. Oliver, M. A. Hannan, M. Salucci, and A. Massa, "Color compressive sensing imaging of arbitrary-shaped scatterers," IEEE Trans. on Microwave Theory and Tech., Vol. 65, 1986-1999, 2017.

95. Salucci, M., L. Poli, and G. Oliveri, "Full-vectorial 3D microwave imaging of sparse scatterers through a multi-task bayesian compressive sensing approach," J. Imaging, Vol. 5, 1-24, 2019.

96. Zhong, Y. and K. Hu, "Contraction integral equation for three-dimensional electromagnetic inverse scattering problem," J. Imaging, Vol. 25, 1-17, 2019.

97. Leijsen, R., P. Fuchs, W. Brink, A. Webb, and R. Remis, "Developments in electrical-property tomography based on the contrast-source inversion method," J. Imaging, Vol. 25, 1-19, 2019.

98. Estatico, C., A. Fedeli, M. Pastorino, A. Randazzo, and E. Tavanti, "Microwave imaging of 3D dielectric structures by means of a Newton-CG method in Lp spaces," Int. J. Antennas Propag., Vol. 2019, 1-15, 2019.

99. Afsari, A., A. Abbosh, and Y. H. Samii, "A rapid medical microwave tomography based on partial differential equations," IEEE Trans. Antennas and Propag., Vol. 6, 5521-5535, 2018.

100. Ambrosanio, M., P. Kosmas, and V. Pascazio, "Exploiting wavelet decomposition to enhance sparse recovery in microwave imaging," Proc. EUCAP, Paris, France, 2017.

101. Semnani, A., I. T. Rekanos, and M. Moghaddam, "Solving inverse scattering problems based on truncated cosine Fourier and cubic B-spline expansions," IEEE Trans. Antennas and Propag., Vol. 60, 5914-5923, 2012.

102. Ahmadabadi, H. and K. Forooraghi, "Application of Fourier-Jacobi expansion to inverse scattering problem," IEEE Antennas Wireless Propag. Lett., Vol. 16, 956-959, 2017.

103. Athira, A. R., T. A. Anjit, and P. Mythili, "A multi-illumination multi-frequency approach for early detection of breast tumor by mode-matching method," Proc. International Conference on Advances in Computing and Communications (ICACC), Cochin, India, 2015.

104. Islam, M. A., A. Kiourti, and J. L. Volakis, "A novel method to mitigate real-imaginary image imbalance in microwave tomography," IEEE Trans. Biomed. Engineering (Early Access), 2019.

105. Bevacqua, M., et al., "A method for quantitative imaging of electrical properties of human tissues from only amplitude electromagnetic data," Inverse Prob., Vol. 35, 1-18, 2018.

106. Zakaria, A. and J. LoVetri, "The finite-element method contrast source inversion algorithm for 2D transverse electric vectorial problems," IEEE Trans. Antennas and Propag., Vol. 60, 1-21, Oct. 2012.

107. Ostadrahimi, M., A. Zakaria, J. LoVetri, and L. Shafai, "A near-field dual polarized (TE-TM) microwave imaging system," IEEE Trans. on Microwave Theory and Tech., Vol. 61, 1376-1384, 2013.

108. Tzagkarakis, G., Bayesian compressed sensing using Alpha-stable distributions, Ph.D. Thesis, Department of Computer Science, University of Crete, Nov. 2009.

109. Klemm, M., J. A. Leendertz, D. Gibbins, I. J. Craddock, A. Preece, and R. Benjamin, "Microwave radar-based differential breast cancer imaging: Imaging in homogeneous breast phantoms and low contrast scenarios," IEEE Trans. Antennas and Propag., Vol. 58, 2337-2344, 2010.

110. Bourqui, J., J. Sill, and E. C. Fear, "A prototype system for measuring microwave frequency reflections from the breast," Int. J. Biomed. Imaging, Vol. 2012, 1-12, 2012.

111. Islam, M. T., M. Z. Mahmud, M. Tarikul Islam, S. Kibria, and M. Samsuzzaman, "A low cost and portable microwave imaging system for breast tumor detection using UWB directional antenna array," Scientific Reports, Vol. 9, 1-13, 2019.

112. Islam, M. T., M. Samsuzzaman, S. Kibria, N. Misran, and M. T. Islam, "Metasurface loaded high gain antenna based microwave imaging using iteratively corrected delay multiply and sum algorithm," Scientific Reports, Vol. 9, 1-14, 2019.

113. Alqadami, A. S. M., K. S. Bialkowski, A. T. Mobashsher, and A. Abbosh, "Wearable electromagnetic head imaging system using flexible wideband antenna array based on polymer technology for brain stroke diagnosis," IEEE Trans. Biomed. Circuits Sys., Vol. 13, 124-134, 2019.

114. Manoufali, M., K. S. Bialkowski, N. Mohammed, P. C. Mills, and A. Abbosh, "Compact implantable antennas for the cerebrospinal fluid monitoring,", Vol. 67, No. 8, 4955-4967, 2019.

115. Felicio, J. M., J. M. Bioucas-Dias, J. R. Costa, and C. A. Fernandes, "Microwave breast imaging using dry setup," IEEE Trans. Computational Imag., Vol. 6, 167-180, 2019.

116. Marimuthu, J., K. S. Bialkowski, and A. M. Abbosh, "Software-defined radar for medical imaging," IEEE Trans. on Microwave Theory and Tech., Vol. 4, 643-652, 2016.

117. Stancombe, A. E., K. S. Bialkowski, and A. M. Abbosh, "Portable microwave head imaging system using software-defined radio and switching network," IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, Vol. 3, No. 4, 284-291, 2019.

118. Casu, M. R., M. Vacca, J. A. Tobon, A. Pulimeno, I. Sarwar, R. Solimene, and F. Vipiana, "A COTS-based microwave imaging system for breast-cancer detection," IEEE Trans. Biomed. Circuits Sys., Vol. 11, 804-814, 2017.

119. Porter, E., E. Kirshin, A. Santorelli, M. Coates, and M. Popovic, "Time-domain multistatic radar system for microwave breast screening," IEEE Antennas Wireless Propag. Lett., Vol. 12, 229-232, 2013.

120. Wang, F. and T. Arslan, "Breast cancer detection with microwave imaging system using wearable conformal antenna arrays," Proc. International Conf. Innovation Sustainability (IST), Gothenburg, Sweden, 2017.

121. Shao, W., A. Edalati, T. R. McColloug, and W. J. McCollough, "A phase confocal method for near-field microwave imaging," IEEE Trans. on Microwave Theory and Tech., Vol. 65, 2508-2514, 2017.

122. Mukherjee, S., L. Udpa, S. Udpa, E. J. Rothwell, and Y. Deng, "A time reversal-based microwave imaging system for detection of breast tumors," IEEE Trans. on Microwave Theory and Tech., Vol. 67, 2062-2075, 2019.

123. Oloumi, D., R. S. C. Winte, A. Kordzadeh, P. Boulanger, and K. Rambabu, "Microwave imaging of breast tumor using time-domain UWB circular-SAR technique," IEEE Trans. Medical Imaging (Early Access), Vol. 39, No. 4, 934-943, 2019.

124. Kwon, S., H. Lee, and S. Lee, "Image enhancement with Gaussian filtering in time-domain microwave imaging system for breast cancer detection," Electronics Lett., Vol. 52, 342-344, 2016.

125. Seo, Y., K. Sogo, and A. Toya, "CMOS equivalent time sampling of Gaussian monocycle pulse for confocal imaging," 2014 IEEE Biomedical Circuits and Systems Conference (BioCAS) Proceedings, Lausanne, Switzerland, Oct. 22–24, 2014.

126. Li, X., E. J. Bond, B. D. Van Veen, and S. C. Hagness, "An overview of ultra-wideband microwave imaging via space-time beamforming for early-stage breast-cancer detection," IEEE Antennas Propag. Mag., Vol. 47, 19-34, 2017.

127. Hossain, M. D., A. S. Mohan, and M. J. Abedin, "Beamspace time reversal microwave imaging for breast cancer detection," IEEE Antennas Wireless Propag. Lett., Vol. 12, 241-244, 2013.

128. Li, Y., E. Porter, and M. Coates, "Imaging-based classification algorithms on clinical trial data with injected tumor responses," Proc. EuCAP 2015, 15, Lisbon, Portugal, May 2015.

129. Shahzad, A., M. O’Halloran, E. Jones, and M. Glavin, "A preprocessing filter for multistatic microwave breast imaging for enhanced tumor detection," Progress In Electromagnetics Research B, Vol. 57, 115-126, 2014.

130. Byrne, D. and I. J. Craddock, "Time-domain wideband adaptive beamforming for radar breast imaging," IEEE Trans. Antennas and Propag., Vol. 63, 1725-1735, 2015.

131. O’Loughlin, D., B. L. Oliveira, M. Glavin, E. Jones, and M. O’Halloran, "Advantages and disadvantages of parameter search algorithms for permittivity estimation for microwave breast imaging," Proc. Eucap 2019, Krakow, Poland, 2019.

132. Li, Y., E. Porter, and M. Coates, "Imaging-based classification algorithms on clinical trial data with injected tumour responses," Proc. EuCAP 2015, 1-5, Lisbon, Portugal, 2015.

133. Elahi, M. A., B. R. Lavoie, E. Porter, M. Glavin, E. Jones, E. C. Fear, and M. O’Halloran, "Comparison of radar-based microwave imaging algorithms applied to experimental breast phantoms," Proc. URSI GASS, 1-4, Montreal, Canada, 2017.

134. Elahi, M. A., B. R. Lavoie, E. Porter, M. Glavin, E. Jones, E. C. Fear, and M. O’Halloran, "Evaluation of image reconstruction algorithms for confocal microwave imaging-application to patient data," Sensors, Vol. 18, 1-21, 2018.

135. O’Loughlin, D., B. L. Oliveira, M. Glavin, E. Jones, and M. O’Halloran, "Comparing radar-based breast imaging algorithm performance with realistic patient-specific permittivity estimation," J. Imag., Vol. 5, 1-15, 2019.

136. Leith, E. N. and J. Upatnieks, "Reconstructed wavefronts and communication theory," Journal of the Optical Society of America, Vol. 52, 1123-1130, 1962.

137. Wang, L., R. Simpkin, and A. M. Al-Jumaily, "Holographic microwave imaging for medical applications," J. Biomed. Science Engg., Vol. 6, 823-833, 2013.

138. Boriskin, A. and R. Sauleau, Aperture Antennas for Millimeter and Sub-millimeter Wave Applications, 490, Springer, 2017.

139. Amineh, R. K., M. Ravan, J. McCombe, and N. K. Nikolova, "Three-dimensional microwave holographic imaging employing forward-scattered waves only," Intl. J. Antennas Propag., Vol. 2013, 1-16, 2013.

140. Amineh, R. K., J. McCombe, A. Khalatpour, and N. K. Nikolova, "Microwave holography using point-spread functions measured with calibration objects," IEEE Trans. Instrum. Meas., Vol. 64, 403-417, 2015.

141. Amineh, R. K., M. Ravan, R. Sharma, and S. Baua, "Three-dimensional holographic imaging using single frequency microwave data," Intl. J. Antennas Propag., Vol. 2018, 1-15, 2018.

142. Wang, L. and M. Fatemi, "Compressive sensing holographic microwave random array imaging of dielectric inclusion," IEEE Access, Vol. 6, 56477-56487, 2018.

143. Biabani, S. A. A., E. Shafie, and M. O. Khozium, "Indirect Holography Breast Cancer Detection System (IH-BCDS) using VORD," European Scientific Journal, Vol. 13, 10-21, 2017.

144. Elsdon, M., O. Yurduseven, and D. Smith, "Early stage breast cancer detection using indirect microwave holography," Progress In Electromagnetics Research, Vol. 143, 405-419, 2013.

145. Smith, D., O. Yurduseven, B. Livingstone, and V. Schejbal, "Microwave imaging using indirect holographic techniques," IEEE Antennas Propag. Mag., Vol. 56, 104-117, 2014.

146. Tajik, D., Advances in quantitative microwave holography, Ph.D. Thesis, Department of Electrical & Computer Engineering, McMaster University, Canada, 2017.

147. Fear, E. C., "Microwave imaging of the breast," Technology in Cancer Research & Treatment, Vol. 4, 69-89, 2005.

148. Kruger, R. A., K. K. Kopecky, A. M. Aisen, P. R. Reinecke, G. A. Kurger, and W. L. Kiser, "Thermoacoustic CT with radio waves: A medical imaging paradigm," Radiology, Vol. 211, 275-278, 1999.

149. Kruger, R. A., W. L. Kiser, P. R. Reinecke, and G. A. Kurger, "Thermoacoustic computed tomography using a conventional linear transducer array," Intl. J. Med. Phy. Research & Practice, Vol. 30, 856-860, 2003.

150. Zanger, G., O. Scherzer, and M. Haltmeier, "Circular integrating detectors in photo and thermoacoustic tomography," Inverse Prob. Sci. Engg., Vol. 17, 133-142, 2009.

151. Xu, M., Y. Xu, and L. Wang, "Time-domain reconstruction algorithms and numerical simulations for thermoacoustic tomography in various geometries," IEEE Trans. Biomed. Engineering, Vol. 50, 1086-1099, 2003.

152. Ye, F., Z. Ji, W. Ding, C. Lou, S. Yang, and D. Xing, "Ultrashort microwave-pumped real-time thermoacoustic breast tumor imaging system," IEEE Trans. Medical Imaging, Vol. 35, 839-844, 2016.

153. Xu, X. and L. V. Wang, "Signal processing in scanning thermo-acoustic tomography in biological tissue," Med. Phys., Vol. 28, 1519-1524, 2008.

154. Abbosh, Y. M., "Breast cancer diagnosis using microwave and hybrid imaging methods," International Journal of Computer Science & Engineering Survey, Vol. 5, 41-48, 2014.

155. Golnabi, A. H., P. M. Meaney, and K. D. Paulsen, "3D microwave tomography of the breast using prior anatomical information," Med. Phys., Vol. 43, 1933-1944, 2016.

156. Golnabi, A. H., P. M. Meaney, S. D. Geimer, and K. D. Paulsen, "3-D microwave tomography using the soft prior regularization technique: Evaluation in anatomically-realistic MRI-derived numerical breast phantoms," IEEE Trans. Biomed. Engineering, Vol. 66, No. 9, 2566-2575, 2019.

157. Dagheyan, A. G., A. Molaei, R. Obermeier, A. K. Martinez, and J. M. Lorenzo, "Near-field radar microwave imaging as an add-on modality to mammography," New Perspectives in Breast Imaging, 15-43, Intech-Open Publishing, London, UK, 2017.

158. Jiang, H., et al., "Ultrasound-guided microwave imaging of breast cancer: Tissue phantom and pilot clinical experiments," Med. Phys., Vol. 32, 2528-2535, 2005.

159. Massey, H., N. Ridley, and I. Lyburn, "Radiowave detection of breast cancer in the symptomatic clinic — A multi-centre study," Proc. International Cambridge Conf. on Breast Imaging, Cambridge, UK, Jul. 2017.

160. Ridley, N., M. Shere, and I. Lyburn, "Cancer detection in dense tissue using radiofrequency imaging-a clinical evaluation," Proc. European Congress of Radiology Annual Meeting, 1-9, Vienna, Austria, Mar. 2017.

161. Grzegorczyk, T. M., P. M. Meaney, and K. D. Paulsen, "Microwave tomographic imaging for breast cancer chemotherapy monitoring," Proc. EuCAP 2014, 702-703, Hague, Netherlands, 2014.

162. Meaney, P. M. and K. D. Paulsen, "Addressing multipath signal corruption in microwave tomography and the influence on system design and algorithm," J. Biomed. Eng. Biosci., Vol. 1, 1-13, 2018.

163. Meaney, P. M., et al., System and method using precious-metal nanoparticle contrast agent for microwave medical imaging, Patent No. US 9, 786, 048 B2, 2017.

164. Hosseinzadegan, S., A. Fhager, M. Persson, and P. M. Meaney, "A discrete dipole approximation solver based on the COCG-FFT algorithm and its application to microwave breast imaging," International Journal of Antennas and Propagation, Vol. 2019, 1-13, 2019.

165. Meaney, P. M., et al., "A 4-channel, vector network analyzer microwave imaging prototype based on software defined radio technology," Rev. Sci. Instrum., Vol. 90, 1-14, 2019.

166. Fasoula, A., L. Duchesne, J. G. D. Cano, P. Lawrence, G. Robin, and J. G. Bernard, "On-site validation of a microwave breast imaging system, before first patient study," Diagnostics, Vol. 8, 1-38, 2018.

167. Fasoula, A., et al., "Microwave vision: From RF safety to medical imaging," Proc. Eucap 2017, 1-5, Paris, France, 2017.

168. Duchesne, L., A. Fasoula, E. Kaverine, G. Robin, and G. J. Bernard, "Wavelia microwave breast imaging: Identification and mitigation of possible sources of measurement uncertainty," Eucap 2019, 1-6, Krakow, Poland, 2019.

169. ICH GCP Clinical Trials Registry, Pilot clinical evaluation of a microwave imaging system for early breast cancer detection pilot clinical study on a low-power electromagnetic wave breast imaging device for cancer screening purposes, https://clinicaltrials.gov/ct2/show/NCT03475992, accessed Jul. 2019.

170. Jeon, S., B. R. Kim, and S. H. Son, "Clinical trial of microwave tomography imaging," Proc. URSI, 1-2, Seoul, Korea, Aug. 2016.

171. Simonov, N., S. Jeon, B. R. Kim, K. J. Lee, and S. H. Son, "Advanced fast 3D electromagnetic solver for microwave tomography imaging," IEEE Trans. Med. Imag., Vol. 36, 2160-2170, 2017.

172. Simonov, N., S. Jeon, B. R. Kim, and S. H. Son, "Analysis of the super-resolution effect on microwave tomography," Special Issue — 2016 URSI Asia-Pacific Radio Science Conference, 2019.

173. Porter, E., M. Coates, and M. Popovic, "An early clinical study of time-domain microwave radar for breast health monitoring," IEEE Trans. Biomed. Engineering, Vol. 63, 530-539, 2016.

174. Li, Y., E. Porter, A. Santorelli, M. Popovic, and M. Coates, "Microwave breast cancer detection via cost-sensitive ensemble classifiers: Phantom and patient investigation," Biomedical Signal Processing and Control, Vol. 31, 366-376, 2017.

175. Kranold, L., C. Quintyne, M. Coates, and M. Popovic, "Clinical study with a time-domain microwave breast monitor: Analysis of the system response and patient attributes," Proc. Eucap 2013, Krakow, Poland, 2019.

176. Yang, F., et al., "A large-scale clinical trial of radar-based microwave breast imaging for Asian women: Phase I," IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 781-783, San Diego, USA, 2017.

177. Bourqui, J. and E. C. Fear, "Systems for ultra-wideband microwave sensing and imaging of biological tissues," Proc. EuCAP 2013, 834-835, Gothenburg, Sweden, 2013.

178. Bourqui, J. and E. C. Fear, "Average breast permittivity measurements: Preliminary results from patient study," Proc. EuCAP, 1-4, Davos, Switzerland, 2016.

179. Ono, Y. and Kuwahara, "An analysis of microwave imaging using a combination of multi-static radar imaging and inverse scattering tomography methods," IEEE Int. Symposium on Antennas & Prop. and USNC/URSI National Radio Science Meeting, 2385-2386, San Diego, USA, 2017.

180. Song, H., et al., "Detectability of breast tumor by a hand-held impulse-radar detector: Performance evaluation and pilot clinical study," Scientific Reports, Vol. 7, 1-11, 2017.

181. Sasada, S., et al., "Portable impulse-radar detector for breast cancer: A pilot study," Journal of Medical Imaging, Vol. 5, 1-5, 2018.

182. Song, H., et al., "Microwave imaging using CMOS integrated circuits with rotating 4×4 antenna array on a breast phantom," International Journal of Antennas and Propagation, Vol. 2017, 1-14, 2017.

183. Azhari, A., Y. Kuwano, X. Xiao, and T. Kikkawa, "Transmit/receive 320 GHz 1.2 mW packaged double-pole-16-throw switching matrix for radar-based target detection," Japanese Journal of Applied Physics, Vol. 57, 1-10, 2017.

184. Azhari, A. and T. Kikkawa, "A 2 to 12GHz 65 nm transmit/receive CMOS DP8T switching matrix for ultra-wideband antenna arrays," Int. J. Circ. Theor. Appl., Vol. 1–9, 2019.

185. Masui, Y., et al., "Gaussian monocycle pulse generator with calibration circuit for breast cancer detection," Proc. BioCAS, 1-4, Cleveland, OH, USA, 2018.

186. Sani, L., et al., "Novel microwave apparatus for breast lesions detection: Preliminary clinical results," Science Direct Biomedical Signal Processing and Control, Vol. 52, 257-263, 2019.

187. Vispa, A., et al., "UWB device for breast microwave imaging: Phantom and clinical validations," Science Direct Measurement, Vol. 146, 582-589, 2019.

188. Kobe University, The science of looking beneath the surface, https://kobeu.ac.jp/research-atkobe/2019-06-17.html, accessed Jan. 2020.

189. Kimura, et al., Scattering tomography method and scattering tomography device, Patent Num. US 2016/0377557 A1, 2017.

190. Kimura, et al., Scattering tomography method and scattering tomography device, Patent Num. EP 2 957 925 B1, 201.

191. Hamsakutty, V., A. Lonappan, V. Thomas, G. Bindu, J. Jacob, J. Yohannan, and K. T. Mathew, "Coupling medium for microwave medical imaging applications," Electronic Lett., Vol. 39, 1498-1499, 2003.

192. Amineh, R. K., M. Ravan, A. Trehan, and N. K. Nikolova, "Near-field microwave imaging based on aperture raster scanning with TEM horn antennas," IEEE Trans. Antennas and Propag., Vol. 59, 928-940, 2011.

193. Mashal, A., et al., "Toward Carbon-nanotube-based theranostic agents for microwave detection and treatment of breast cancer: Enhanced dielectric and heating response of tissue-mimicking materials," IEEE Trans. Biomed. Engineering, Vol. 8, 1831-1834, 2010.

194. Mashal, A., B. Sitharaman, J. H. Booske, and S. C. Hagness, "Dielectric characterization of carbon nanotube contrast agents for microwave breast cancer detection," Antennas and Propagation Society Int. Symp., 1-4, 2009.

195. Bevacqua, M. T. and R. Scapaticci, "A compressive sensing approach for 3D breast cancer microwave imaging with magnetic nanoparticles as contrast agent," IEEE Trans. Med. Imag., Vol. 35, 665-673, 2016.

196. Samadishadlou, M., et al., "Magnetic carbon nanotubes: Preparation, physical properties, and applications in biomedicine," Artificial Cells, Nanomedicine, and Biotechnology, Vol. 7, 1314-1330, 2017.

197. Scapaticci, R., G. Bellizzi, I. Catapano, L. Crocco, and O. M. Bucci, "An effective procedure for MNP-enhanced breast cancer microwave imaging," IEEE Trans. Biomed. Engineering, Vol. 61, 1071-1079, 2014.

198. Bucci, O. M., G. Bellizzi, A. Borgia, S. Costanzo, L. Crocco, and D. G. Massa, "Characterization of a laboratory set-up for assessing the feasibility of magnetic nanoparticles enhanced microwave imaging," Proc. EuCAP’16, 1-4, Davos, Switzerland, 2016.

199. Akinci, M. N., M. Cayoren, and E. Gose, "Qualitative microwave imaging of breast cancer with contrast agents," Phys. Med. Biol., Vol. 64, 1-12, 2019.

200. Mazri, T., F. Riouch, and N. A. Idrissi, "Design and simulation of a SP4T switch based on PIN diode suitable for UMTS use," Int. J. Comp. Sci. Network Security, Vol. 11, 77-81, 2011.

201. Wu, H. and R. K. Amineh, "A low-cost and compact three-dimensional microwave holographic imaging system," Electronics, Vol. 8, 1-20, 2019.

202. Nikolova, N. K., "Microwave imaging for breast cancer," IEEE Microwave Mag., Vol. 12, 78-94, 2011.

203. Bucci, O. M. and G. Franceschetti, "On the degrees of freedom of scattered fields," IEEE Trans. Antennas and Propag., Vol. 37, 918-926, 1989.

204. Kaye, C., I. Jeffrey, and J. LoVetri, "Improvement of multi-frequency microwave breast imaging through frequency cycling and tissue-dependent mapping," IEEE Trans. Antennas and Propag., Vol. 67, 7087-7096, 2019.

205. Salucci, M., G. Oliveri, and A. Massa, "GPR prospecting through an inverse-scattering frequency-hopping multifocusing approach," IEEE Trans. Geosci. Remote Sens., Vol. 53, 6573-6592, 2015.

206. Adler, J. and O. Oktem, "Solving ill-posed inverse problems using iterative deep neural networks," Inverse Prob., Vol. 33, 1-24, 2017.

207. Sun, Y., Z. Xia, and U. S. Kamilov, "Efficient and accurate inversion of multiple scattering with deep learning," Opt. Express, Vol. 26, 14678-14688, 2018.

208. Data Science, Why do convolutional neural networks work?, https://datascience.stackexchange.com/questions/15903/why-do-the-convolutional-neural-networks-work, accessed Nov. 2019.

209. Jin, K. H., M. T. McCann, and M. Unser, "Deep convolutional neural network for inverse problems in imaging," IEEE Trans. Image Process., Vol. 26, 4509-4522, 2017.

210. Li, L., et al., "DeepNIS: Deep neural network for nonlinear electromagnetic inverse scattering," IEEE Trans. Antennas and Propag., Vol. 67, 1819-1825, 2019.

211. Wei, Z. and X. Chen, "Deep-learning schemes for full-wave nonlinear inverse scattering problems," IEEE Trans. Geosci. Remote Sens., Vol. 57, 1849-1860, 2019.

212. Sanghvi, Y., Y. Kalepu, and U. K. Khankhoje, "Embedding deep learning in inverse scattering problems," IEEE Trans. Computational Imag., Vol. 6, 46-56, 2019.

213. Rana, S. P., et al., "Machine learning approaches for automated lesion detection in microwave breast imaging clinical data," Scientific Reports, Vol. 9, 1-12, 2019.

214. Ashtiani, F., A. Risi, and F. Aflatouni, "Single-chip nanophotonic near-field imager," Optica, Vol. 6, 1255-1260, 2019.


© Copyright 2010 EMW Publishing. All Rights Reserved