Vol. 98
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2022-12-15
Gain-Bandwidth Enhancement of Tapered Fed Ellipsoid Antenna for EWB (23.16-776.59 GHz ) Applications Using EBG
By
Progress In Electromagnetics Research B, Vol. 98, 1-19, 2023
Abstract
A compact extreme wide band (EWB) modified ellipsoid monopole antenna utilising electromagnetic band gap (EBG) technology is developed on a Rogers RT/Duroid 5880 substrate for high frequency millimetre (mm) wave applications including cellular, satellite, radar, and medical imaging. The proposed antenna design has an overall dimension of 40 mm x 30 mm x 0.787 mm and achieves EWB characteristics with a frequency range of 23.16 GHz to 776.59 GHz, a fractional impedance bandwidth (FBW) of 188.41%, and a bandwidth ratio (BR) of 33.53 by using a tapered feed and an EBG technique. The proposed antenna design attained a maximum peak gain of 17.91 dB and a peak radiation efficiency of 99.4%. On the basis of its high impedance wide bandwidth (IBW), FBW, BR, peak gain, and peak radiation efficiency, as well as its omnidirectional radiation properties at resonant frequencies, this compact antenna has the potential to be utilised for EWB applications. The HFSS 3-D solver is applied to characterize and analyse antenna performance.
Citation
Naineri Suguna, and Senthil Revathi, "Gain-Bandwidth Enhancement of Tapered Fed Ellipsoid Antenna for EWB (23.16-776.59 GHz ) Applications Using EBG," Progress In Electromagnetics Research B, Vol. 98, 1-19, 2023.
doi:10.2528/PIERB22101113
References

1. Bernety, H. M., B. Zakeri, and R. Gholami, 2013 21st Iranian Conference on Electrical Engineering (ICEE), 1-4, 2013, doi:10.1109/iraniancee.2013.65996.

2. Pandey, S. K., G. P. Pandey, and P. M. Sarun, "Fractal based triple band high gain monopole antenna," Frequenz, Vol. 71, No. 11-12, 2017, doi:10.1515/freq-2016-0208.
doi:10.1515/freq-2016-0208

3. Samsuzzaman, M. and M. T. Islam, "A semicircular shaped super wideband patch antenna with high bandwidth dimension ratio," Microwave and Optical Technology Letters, Vol. 57, No. 2, 445-452, 2014, doi:10.1002/mop.28872.
doi:10.1002/mop.28872

4. Ellis, M. S., Z. Zhao, J.Wu, Z. Nie, and Q. H. Liu, "Small planar monopole ultra-wideband antenna with reduced ground plane effect," IET Microw Antennas Propag., Vol. 9, No. 10, 1028-1034, 2015.
doi:10.1049/iet-map.2014.0538

5. Aziz, S. Z. and M. F. Jamlos, "Compact super wideband patch antenna design using diversities of reactive loaded technique," Microwave and Optical Technology Letters, Vol. 58, No. 12, 2811-2814, 2016, doi:10.1002/mop.30152.
doi:10.1002/mop.30152

6. Nadeem, M., A. N. Khan, A. Ali Khan, and T. Azim, "Low profile CPW fed slotted planar inverted cone ultra-wide band antenna for WBAN applications," Microwave and Optical Technology Letters, Vol. 60, No. 4, 870-876, 2018, doi:10.1002/mop.31070.
doi:10.1002/mop.31070

7. Singhal, S. and A. K. Singh, "CPW-fed hexagonal Sierpinski super wideband fractal antenna," IET Microwaves, Antennas & Propagation, Vol. 10, No. 15, 1701-1707, 2016, doi:10.1049/iet-map.2016.0154.
doi:10.1049/iet-map.2016.0154

8. Addaci, R. and T. Fortaki, "Miniature low profile UWB antenna: New techniques for bandwidth enhancement and radiation pattern stability," Microwave and Optical Technology Letters, Vol. 58, No. 8, 1808-1813, 2016, doi:10.1002/mop.29907.
doi:10.1002/mop.29907

9. Hakimi, S., S. K. A. Rahim, M. Abedian, S. M. Noghabaei, and M. Khalily, "CPW-fed transparent antenna for extended ultrawideband applications," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 1251-1254, 2014, doi:10.1109/lawp.2014.2333091.
doi:10.1109/LAWP.2014.2333091

10. Hendevari, M. S., A. Pourziad, and S. Nikmehr, "A novel ultra-wideband monopole antenna for ground penetrating radar application," Microwave and Optical Technology Letters, Vol. 60, No. 9, 2252-2256, 2018, doi:10.1002/mop.31335.
doi:10.1002/mop.31335

11. Gorai, A., A. Karmakar, M. Pal, and R. Ghatak, "A CPW-fed propeller shaped monopole antenna with super wideband characteristics," Progress In Electromagnetics Research C, Vol. 45, 125-135, 2013.
doi:10.2528/PIERC13082805

12. Nikolaou, S. and M. A. B. Abbasi, "Design and development of a compact UWB monopole antenna with easily-controllable return loss," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 4, 2063-2067, 2017, doi:10.1109/tap.2017.2670322.
doi:10.1109/TAP.2017.2670322

13. Singhal, S. and A. K. Singh, "CPW-fed Phi-shaped monopole antenna for super-wideband applications," Progress In Electromagnetics Research C, Vol. 64, 105-116, 2016.
doi:10.2528/PIERC16022401

14. Omar, A. A., O. Abu Safia, and M. Nedil, "UWB coplanar waveguide-fed coplanar strips rectangular spiral antenna," International Journal of RF and Microwave Computer-Aided Engineering, Vol. 27, No. 7, e21115, 2017, doi:10.1002/mmce.21115.
doi:10.1002/mmce.21115

15. Rahman, M. N., M. T. Islam, M. Z. Mahmud, and M. Samsuzzaman, "Compact microstrip patch antenna proclaiming super wideband characteristics," Microwave and Optical Technology Letters, Vol. 59, No. 10, 2563-2570, 2017, doi:10.1002/mop.30770.
doi:10.1002/mop.30770

16. Hayouni, M., F. Choubani, T. H. Vuong, and J. David, "Main effects ensured by symmetric circular slots etched on the radiating patch of a compact monopole antenna on the impedance bandwidth and radiation patterns," Wireless Pers. Commun., Vol. 95, No. 4, 4243-4256, 2017.
doi:10.1007/s11277-017-4077-7

17. Dong, Y., W. Hong, L. Liu, Y. Zhang, and Z. Kuai, "Performance analysis of a printed super-wideband antenna," Microwave and Optical Technology Letters, Vol. 51, No. 4, 949-956, 2009, doi:10.1002/mop.24222.
doi:10.1002/mop.24222

18. Wu, B. J. and Q. Y. Feng, "A novel compact broadband antenna for LTE/WLAN/WiMAX applications," Progress In Electromagnetics Research Letters, Vol. 59, 129-135, 2016.
doi:10.2528/PIERL16030403

19. Liu, J., S. Zhong, and K. P. Esselle, "A printed elliptical monopole antenna with modified feeding structure for bandwidth enhancement," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 2, 667-670, 2011, doi:10.1109/tap.2010.2096398.
doi:10.1109/TAP.2010.2096398

20. Tiwari, R. N., P. Singh, and B. K. Kanaujia, "Small-size scarecrow-shaped CPW and microstrip-line-fed UWB antennas," Journal of Computational Electronics, Vol. 17, No. 3, 1047-1055, 2018, doi:10.1007/s10825-018-1182-0.
doi:10.1007/s10825-018-1182-0

21. Liu, J., K. P. Esselle, S. G. Hay, and S. Zhong, "Achieving ratio bandwidth of 25 : 1 from a printed antenna using a tapered semi-ring feed," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1333-1336, 2011, doi:10.1109/lawp.2011.2177800.

22. Srivastava, K., A. Kumar, B. K. Kanaujia, S. Dwari, and S. Kumar, "Multiband integrated wideband antenna for bluetooth/WLAN applications," AEU --- International Journal of Electronics and Communications, Vol. 89, 77-84, 2018, doi: 10.1016/j.aeue.2018.03.027.
doi:10.1016/j.aeue.2018.03.027

23. Bozdag, G. and A. Kustepeli, "Wideband planar monopole antennas for GPS/WLAN/WiMAX/UWB and X-band applications," Microwave and Optical Technology Letters, Vol. 58, No. 2, 257-261, 2015, doi:10.1002/mop.29550.
doi:10.1002/mop.29550

24. Yang, L., D. Zhang, X. Zhu, and Y. Li, "Design of a super wide band antenna and measure of ambient RF density in urban area," IEEE Access, Vol. 8, 767-774, 2020, doi:10.1109/access.2019.2962141.
doi:10.1109/ACCESS.2019.2962141

25. Ramanuajam, P., C. Arumugam, R. Venkatesan, and M. Ponusamy, "Design of compact patch antenna with enhanced gain and bandwidth for 5Gmm-wave applications," IET Microwaves, Antennas & Propagation, Vol. 14, No. 12, 1455-1461, 2020, doi:10.1049/iet-map.2019.0891.
doi:10.1049/iet-map.2019.0891

26. Elhabchi, M., M. N. Srifi, and R. Touahni, "A novel CPW-fed semi-circular triangular antenna with modified ground plane for super ultra-wide band (UWB) applications," 2018 International Symposium on Advanced Electrical and Communication Technologies (ISAECT), 1-5, 2018, doi:10.1109/isaect.2018.8618857.

27. Malik, R., P. Singh, H. Ali, and T. Goel, "A star shaped superwide band fractal antenna for 5G applications," 2018 3rd International Conference for Convergence in Technology (I2CT), 1-6, 2018, doi:10.1109/i2ct.2018.8529404.

28. Okas, P., A. Sharma, G. Das, and R. K. Gangwar, "Elliptical slot loaded partially segmented circular monopole antenna for super wideband application," AEU --- International Journal of Electronics and Communications, Vol. 88, 63-69, 2018, doi: 10.1016/j.aeue.2018.03.004.
doi:10.1016/j.aeue.2018.03.004

29. Srikar, D. and S. Anuradha, "A compact super wideband antenna for wireless communications," 2018 9th International Conference on Computing, Communication and Networking Technologies (ICCCNT), 1-4, 2018, doi:10.1109/icccnt.2018.8494146.

30. Rahman, M., W. T. Khan, and M. Imran, "Penta-notched UWB antenna with sharp frequency edge selectivity using combination of SRR, CSRR, and DGS," AEU -- International Journal of Electronics and Communications, Vol. 93, 116-122, 2018, doi: 10.1016/j.aeue.2018.06.010.
doi:10.1016/j.aeue.2018.06.010

31. Mythili, P. and A. Das, "Simple approach to determine resonant frequencies of microstrip antennas," IEE Proceedings --- Microwaves, Antennas and Propagation, Vol. 145, No. 2, 159-162, 1998.
doi:10.1049/ip-map:19981636

32. Ray, K. P. and G. Kumar, "Determination of the resonant frequency of microstrip antennas," Microwave and Optical Technology Letters, Vol. 23, No. 2, 114-117, 1999.
doi:10.1002/(SICI)1098-2760(19991020)23:2<114::AID-MOP15>3.0.CO;2-G

33. Sievenpiper, D., "High-impedance electromagnetic surfaces,", Ph.D. Dissertation, UCLA, 1999, Available at www.ee.ucla.edu/labs/photon/thesis/ThesisDan.pdf.

34. Yang, F. and Y. Rahmat-Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, 2003, doi: 10.1109/TAP.2003.817559.
doi:10.1109/TAP.2003.817559

35. Shaban, H. F., H. A. Elmikaty, and A. A. Shaalan, "Study the effects of electromagnetic band-gap (EBG) substrate on two patch microstrip antenna," Progress In Electromagnetics Research B, Vol. 10, 55-74, 2008.
doi:10.2528/PIERB08081901

36. Elsheakh, D. M., H. A. Elsadek, and E. A. Abdallah, "Antenna designs with electromagnetic band gap structures," Metamaterial, 403-473, InTech, Rijeka, Croatia, 2012.

37. Yang, F. and Y. Rahmat Samii, "Reflection phase characterizations of the EBG ground plane for low profile wire antenna," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2691-2703, Oct. 2003.
doi:10.1109/TAP.2003.817559

38. Elsheakh, D. N., H. A. Elsadek, E. A. Abdallah, H. Elhenawy, and M. F. Iskander, "Enhancement of microstrip monopole antenna bandwidth by using EBG structures," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 959-962, 2009, doi: 10.1109/LAWP.2009.2030375.
doi:10.1109/LAWP.2009.2030375