Vol. 99
Latest Volume
All Volumes
PIERB 105 [2024] PIERB 104 [2024] PIERB 103 [2023] PIERB 102 [2023] PIERB 101 [2023] PIERB 100 [2023] PIERB 99 [2023] PIERB 98 [2023] PIERB 97 [2022] PIERB 96 [2022] PIERB 95 [2022] PIERB 94 [2021] PIERB 93 [2021] PIERB 92 [2021] PIERB 91 [2021] PIERB 90 [2021] PIERB 89 [2020] PIERB 88 [2020] PIERB 87 [2020] PIERB 86 [2020] PIERB 85 [2019] PIERB 84 [2019] PIERB 83 [2019] PIERB 82 [2018] PIERB 81 [2018] PIERB 80 [2018] PIERB 79 [2017] PIERB 78 [2017] PIERB 77 [2017] PIERB 76 [2017] PIERB 75 [2017] PIERB 74 [2017] PIERB 73 [2017] PIERB 72 [2017] PIERB 71 [2016] PIERB 70 [2016] PIERB 69 [2016] PIERB 68 [2016] PIERB 67 [2016] PIERB 66 [2016] PIERB 65 [2016] PIERB 64 [2015] PIERB 63 [2015] PIERB 62 [2015] PIERB 61 [2014] PIERB 60 [2014] PIERB 59 [2014] PIERB 58 [2014] PIERB 57 [2014] PIERB 56 [2013] PIERB 55 [2013] PIERB 54 [2013] PIERB 53 [2013] PIERB 52 [2013] PIERB 51 [2013] PIERB 50 [2013] PIERB 49 [2013] PIERB 48 [2013] PIERB 47 [2013] PIERB 46 [2013] PIERB 45 [2012] PIERB 44 [2012] PIERB 43 [2012] PIERB 42 [2012] PIERB 41 [2012] PIERB 40 [2012] PIERB 39 [2012] PIERB 38 [2012] PIERB 37 [2012] PIERB 36 [2012] PIERB 35 [2011] PIERB 34 [2011] PIERB 33 [2011] PIERB 32 [2011] PIERB 31 [2011] PIERB 30 [2011] PIERB 29 [2011] PIERB 28 [2011] PIERB 27 [2011] PIERB 26 [2010] PIERB 25 [2010] PIERB 24 [2010] PIERB 23 [2010] PIERB 22 [2010] PIERB 21 [2010] PIERB 20 [2010] PIERB 19 [2010] PIERB 18 [2009] PIERB 17 [2009] PIERB 16 [2009] PIERB 15 [2009] PIERB 14 [2009] PIERB 13 [2009] PIERB 12 [2009] PIERB 11 [2009] PIERB 10 [2008] PIERB 9 [2008] PIERB 8 [2008] PIERB 7 [2008] PIERB 6 [2008] PIERB 5 [2008] PIERB 4 [2008] PIERB 3 [2008] PIERB 2 [2008] PIERB 1 [2008]
2023-03-20
An Analytical Approach for Pulse Compression Favorable Digitized Frequency Modulated Thermal Wave Imaging Technique for the Quantitative Estimation of Breast Cancer
By
Progress In Electromagnetics Research B, Vol. 99, 63-81, 2023
Abstract
Among several noninvasive diagnostic modalities used for identifying and assessing breast cancer, a recently proposed digitized frequency-modulated thermal wave imaging (DFMTWI) has emerged as a widely applied active thermographic technique. DFMTWI has demonstrated its capabilities for early diagnosis and quantitative evaluation of breast cancer by exhibiting better pulse compression properties. This approach delivers better depth resolution and sensitivity than standard thermographic techniques. The current research illustrates the novel analytical model for the pulse compression favorable DFMTWI technique for the quantitative estimation of breast cancer. Using Green's function approach, an analytical model has been solved by considering the multilayer Pennes bioheat transfer equation with adiabatic boundary conditions and a constant initial condition. The conventional thermographic techniques (such as Lock-in Thermography (LT) and Pulse Thermography (PT)) are also solved with a similar approach as followed for DFMTWI. The results obtained for the proposed DFMTWI and the conventional LT and PT thermographic techniques are then compared and validated with the numerical results obtained from the numerical simulation considering the correlation coefficient as a figure of merit for early-stage breast cancer diagnosis.
Citation
Anshul Sharma, Vanita Arora, and Ravibabu Mulaveesala, "An Analytical Approach for Pulse Compression Favorable Digitized Frequency Modulated Thermal Wave Imaging Technique for the Quantitative Estimation of Breast Cancer," Progress In Electromagnetics Research B, Vol. 99, 63-81, 2023.
doi:10.2528/PIERB22102701
References

1. Bray, F., J. Ferlay, I. Soerjomataram, et al. "Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries," CA Cancer J. Clin., Vol. 68, 394-424, 2018.
doi:10.3322/caac.21492

2. Ferlay, J., M. Colombet, I. Soerjomataram, C. Mathers, D. M. Parkin, M. Pineros, A. Znaor, and F. Bray, "Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods," International Journal of Cancer, Vol. 144, No. 8, 1941-1953, 2019.
doi:10.1002/ijc.31937

3. Riggio, A. I., K. E. Varley, and A. L. Welm, "The lingering mysteries of metastatic recurrence in breast cancer," British Journal of Cancer, Vol. 124, No. 1, 13-26, 2021.
doi:10.1038/s41416-020-01161-4

4. Hassett, M. J., M. R. Somer eld, E. R. Baker, F. Cardoso, K. J. Kansal, D. C. Kwait, and S. H. Giordano, "Management of male breast cancer: ASCO guideline," Journal of Clinical Oncology, Vol. 38, No. 16, 1849-1863, 2020.
doi:10.1200/JCO.19.03120

5. Hortobagyi, G. N., J. de la Garza Salazar, K. Pritchard, D. Amadori, R. Haidinger, and C. A. Hudis, "ABREAST investigators, the global breast cancer burden: Variations in epidemiology and survival," Clinical Breast Cancer, Vol. 6, No. 5, 391-401, 2005.
doi:10.3816/CBC.2005.n.043

6. He, Z., Z. Chen, M. Tan, S. Elingarami, Y. Liu, T. Li, and W. Li, "A review on methods for diagnosis of breast cancer cells and tissues," Cell Proliferation, Vol. 53, No. 7, e12822, 2020.
doi:10.1111/cpr.12822

7. Harbeck, N., F. Penault-Llorca, J. Cortes, M. Gnant, N. Houssami, P. Poortmans, K. Ruddy, J. Tsang, and F. Cardoso, "Breast cancer (Primer)," Nature Reviews: Disease Primers, Vol. 5, No. 1, 66, 2019.
doi:10.1038/s41572-019-0111-2

8. Britt, K. L., J. Cuzick, and K. A. Phillips, "Key steps for effective breast cancer prevention," Nature Reviews Cancer, 1-20, 2020.

9. Akram, M., M. Iqbal, M. Daniyal, and A. U. Khan, "Awareness, and current knowledge of breast cancer," Biological Research, Vol. 50, No. 1, 33, 2017.
doi:10.1186/s40659-017-0140-9

10. Rao, A. P., N. Bokde, and S. Sinha, "Photoacoustic imaging for management of breast cancer: A literature review and future perspectives," Applied Sciences, Vol. 10, No. 3, 767, 2020.
doi:10.3390/app10030767

11. Zeng, Z., A. Amin, A. Roy, N. E. Pulliam, L. C. Karavites, S. Espino, I. Helenowski, X. Li, Y. Luo, and S. A. Khan, "Preoperative magnetic resonance imaging use and oncologic outcomes in premenopausal breast cancer patients," NPJ Breast Cancer, Vol. 6, No. 1, 1-8, 2020.
doi:10.1038/s41523-019-0144-4

12. Badiger, S. and J. Moger, "A comparative study of mammography, sonography and infrared thermography in detection of cancer in breast," International Surgery Journal, Vol. 7, No. 6, 1886-1892, 2020.
doi:10.18203/2349-2902.isj20202401

13. Wang, J., K. J. Chang, C. Y. Chen, K. L. Chien, Y. S. Tsai, Y. M. Wu, and T. T. F. Shih, "Evaluation of the diagnostic performance of infrared imaging of the breast: A preliminary study," Biomedical Engineering Online, Vol. 9, No. 1, 1-14, 2010.
doi:10.1186/1475-925X-9-3

14. Ng, E. Y. K. and N. M. Sudharsan, "An improved three-dimensional direct numerical modelling and thermal analysis of a female breast with tumour," Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, Vol. 215, No. 1, 25-37, 2001.
doi:10.1243/0954411011533508

15. Gonzalez, F. J., "Noninvasive estimation of the metabolic heat production of breast tumors using digital infrared imaging," Quantitative InfraRed Thermography Journal, Vol. 8, No. 2, 139-148, 2011.
doi:10.3166/qirt.8.139-148

16. Maldague, X. and S. Marinetti, "Pulse phase infrared thermography," Journal of Applied Physics, Vol. 79, No. 5, 2694-2698, 1996.
doi:10.1063/1.362662

17. Maldague, X., Y. Largouct, and J. P. Couturier, "A study of defect depth using neural networks in pulsed phase thermography: Modeling, noise, experiments," Revue Generale de Thermique, Vol. 37, No. 8, 704-717, 1998.
doi:10.1016/S0035-3159(98)80048-2

18. Vavilov, V. P. and S. Marinetti, "Pulsed phase thermography and fourier-analysis thermal tomography," Russian Journal of Nondestructive Testing, Vol. 35, No. 2, 134-145, 1999.

19. Ibarra-Castanedo, C., N. P. Avdelidis, and X. Maldague, "Qualitative and quantitative assessment of steel plates using pulsed phase thermography," Materials Evaluation, Vol. 63, No. 11, 1128-1133, 2005.

20. Pickering, S. and D. Almond, "Matched excitation energy comparison of the pulse and lock-in thermography NDE techniques," NDT and E International, Vol. 41, No. 7, 501-509, 2008.
doi:10.1016/j.ndteint.2008.05.007

21. Busse, G., D. Wu, and W. Karpen, "Thermal wave imaging with phase sensitive modulated thermography," Journal of Applied Physics, Vol. 71, No. 8, 3962-3965, 1992.
doi:10.1063/1.351366

22. Wu, D. and G. Busse, "Lock-in thermography for Nondestructive evaluation of materials," Revue Generale de Thermique, Vol. 37, No. 8, 693-703, 1998.
doi:10.1016/S0035-3159(98)80047-0

23. Mulaveesala, R. and S. Tuli, "Digitized frequency modulated thermal wave imaging for nondestructive testing," Materials Evaluation, Vol. 63, No. 10, 1046-1050, 2005.

24. Mulaveesala, R., P. Pal, and S. Tuli, "Interface study of bonded wafers by digitized linear frequency modulated thermal wave imaging," Sensors and Actuators A: Physical, Vol. 128, No. 1, 209-216, 2006.
doi:10.1016/j.sna.2006.01.004

25. Sharma, A., R. Mulaveesala, G. Dua, V. Arora, and N. Kumar, "Digitized frequency modulated thermal wave imaging for detection and estimation of osteoporosis," IEEE Sensors Journal, Vol. 21, No. 13, 14003-14010, 2021.
doi:10.1109/JSEN.2020.3043282

26. Carslaw, H. S. and J. C. Jaeger, Conduction of Heat in Solids, Oxford Clarendon Press, London, 1959.

27. Ozisik, M. N., Heat Conduction, John Wiley & Sons, 1993.

28. Ozisik, M. N., Boundary Value Problems of Heat Conduction, Courier Corporation, 1989.

29. Pennes, H. H., "Analysis of tissue and arterial blood temperatures in the resting human forearm," Journal of Applied Physiology, Vol. 1, No. 2, 93-122, 1948.
doi:10.1152/jappl.1948.1.2.93

30. Durkee, Jr., J., P. Antich, and C. Lee, "Exact solutions to the multiregion time-dependent bioheat equation. I: Solution development," Physics in Medicine & Biology, Vol. 35, No. 7, 847, 1990.
doi:10.1088/0031-9155/35/7/004

31. Durkee, Jr., J., P. Antich, and C. Lee, "Exact solutions to the multiregion time-dependent bioheat equation. II: Numerical evaluation of the solutions," Physics in Medicine & Biology, Vol. 35, No. 7, 869, 1990.
doi:10.1088/0031-9155/35/7/005

32. Durkee, Jr., J. and P. Antich, "Exact solutions to the multi-region time-dependent bioheat equation with transient heat sources and boundary conditions," Physics in Medicine & Biology, Vol. 36, No. 3, 345, 1991.
doi:10.1088/0031-9155/36/3/004

33. Sharma, A., R. Mulaveesala, and V. Arora, "Novel analytical approach for estimating thermal diffusivity and effusivity for detection of osteoporosis," IEEE Sensors Journal, Vol. 20, No. 11, 6046-6054, 2020.
doi:10.1109/JSEN.2020.2973233

34. Sharma, A., R. Mulaveesala, G. Dua, and N. Kumar, "Linear frequency modulated thermal wave imaging for estimation of osteoporosis: An analytical approach," Electronics Letters, Vol. 56, No. 19, 1007-1010, 2020.
doi:10.1049/el.2020.0671

35. Bagaria, H. and D. Johnson, "Transient solution to the bioheat equation and optimization for magnetic fluid hyperthermia treatment," International Journal of Hyperthermia, Vol. 21, No. 1, 57-75, 2005.
doi:10.1080/02656730410001726956

36. Rodrigues, D., P. Pereira, P. Limao-Vieira, P. Stauffer, and P. F. Maccarini, "Study of the one dimensional and transient bioheat transfer equation: multilayer solution development and applications," International Journal of Heat and Mass Transfer, Vol. 62, 153-162, 2013.
doi:10.1016/j.ijheatmasstransfer.2012.11.082

37. Sharma, A., G. Dua, V. Arora, N. Kumar, and R. Mulaveesala, "A novel analytical approach for nondestructive testing and evaluation of bone implants using frequency modulated thermal wave imaging," Lecture Notes in Mechanical Engineering, 273-285, 2022.
doi:10.1007/978-981-16-9093-8_22

38. Ramp, H. O. and E. R. Wingrove, "Principles of pulse compression," IRE Transactions on Military Electronics, Vol. 5, No. 2, 109-116, 1961.
doi:10.1109/IRET-MIL.1961.5008328

39. Cook, C. E. and J. Paolillo, "A pulse compression predistortion function for efficient sidelobe reduction in a high-power radar," Proceedings of the IEEE, Vol. 52, No. 4, 377-389, 1964.
doi:10.1109/PROC.1964.2927

40. Mulaveesala, R., V. J. Somayajulu, and S. Pushpraj, "Pulse compression approach to infrared nondestructive characterization," Review of Scienti c Instruments, Vol. 79, No. 9, Art. No. 094901, 2008.

41. Mulaveesala, R., J. S. Vaddi, and P. Singh, "Pulse compression approach to infrared nondestructive characterization," Review of Scienti c Instruments, Vol. 79, No. 9, 094901, 2008.
doi:10.1063/1.2976673

42. Sharma, A., G. Dua, and R. Mulaveesala, "Breast cancer detection using frequency modulated thermal wave imaging," Imaging Science Journal, Vol. 67, No. 7, 396-406, 2019.
doi:10.1080/13682199.2019.1679442

43. Werner, J. and M. Buse, "Temperature pro les with respect to inhomogeneity and geometry of the human body," Journal of Applied Physiology, Vol. 65, No. 3, 1110-1118, 1988.
doi:10.1152/jappl.1988.65.3.1110

44. Williams, L. and R. Leggett, "Reference values for resting blood ow to organs of man," Clinical Physics and Physiological Measurement, Vol. 10, No. 3, 187, 1989.
doi:10.1088/0143-0815/10/3/001

45. Gonzalez, F. J., "Noninvasive estimation of the metabolic heat production of breast tumors using digital infrared imaging," Quantitative InfraRed Thermography Journal, Vol. 8, No. 2, 139-148, 2011.
doi:10.3166/qirt.8.139-148